首页> 外文期刊>ACM transactions on knowledge discovery from data >A Reduced Network Traffic Method for IoT Data Clustering
【24h】

A Reduced Network Traffic Method for IoT Data Clustering

机译:IOT数据群集的减少网络流量方法

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things (IoT) systems usually involve interconnected, low processing capacity, and low memory sensor nodes (devices) that collect data in several sorts of applications that interconnect people and things. In this scenario, mining tasks, such as clustering, have been commonly deployed to detect behavioral patterns from the collected data. The centralized clustering of IoT data demands high network traffic to transmit the data from the devices to a central node, where a clustering algorithm must be applied. This approach does not scale as the number of devices increases, and the amount of data grows. However, distributing the clustering process through the devices may not be a feasible approach as well, since the devices are usually simple and may not have the ability to execute complex procedures. This work proposes a centralized IoT data clustering method that demands reduced network traffic and low processing power in the devices. The proposed method uses a data grid to summarize the information at the devices before transmitting it to the central node, reducing network traffic. After the data transfer, the proposed method applies a clustering algorithm that was developed to process data in the summarized representation. Tests with seven datasets provided experimental evidence that the proposed method reduces network traffic and produces results comparable to the ones generated by DBSCAN and HDBSCAN, two robust centralized clustering algorithms.
机译:事情互联网(物联网)系统通常涉及互联,低处理能力和低存储器传感器节点(设备),该节点(设备)收集多种应用程序的数据,这些应用程序互连人员和事物。在这种情况下,通常部署群种任务,例如聚类,以检测来自收集数据的行为模式。 IOT数据的集中群集需要高网络流量来将数据从设备传输到中心节点,其中必须应用群集算法。随着设备数量的增加,此方法不会缩放,数据量增长。然而,通过设备分发聚类过程可能不是一种可行的方法,因为设备通常简单,并且可能没有执行复杂过程的能力。这项工作提出了一种集中式IOT数据聚类方法,要求降低设备中的网络流量和低处理电量。所提出的方法使用数据网格来总结在将设备发送到中心节点之前的信息,从而减少网络流量。在数据传输之后,所提出的方法应用于在总结表示中进行处理数据的聚类算法。具有七个数据集的测试提供了实验证据,即所提出的方法降低了网络流量,并产生了与DBSCAN和HDBSCAN生成的结果相当的结果,其中两个强大的集中式聚类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号