首页> 外文期刊>ACM transactions on knowledge discovery from data >Network Embedding for Community Detection in Attributed Networks
【24h】

Network Embedding for Community Detection in Attributed Networks

机译:在归属网络中嵌入社区检测的网络

获取原文
获取原文并翻译 | 示例

摘要

Community detection aims to partition network nodes into a set of clusters, such that nodes are more densely connected to each other within the same cluster than other clusters. For attributed networks, apart from the denseness requirement of topology structure, the attributes of nodes in the same community should also be homogeneous. Network embedding has been proved extremely useful in a variety of tasks, such as node classification, link prediction, and graph visualization, but few works dedicated to unsupervised embedding of node features specified for clustering task, which is vital for community detection and graph clustering. By post-processing with clustering algorithms like k-means, most existing network embedding methods can be applied to clustering tasks. However, the learned embeddings are not designed for clustering task, they only learn topological and attributed information of networks, and no clustering-oriented information is explored. In this article, we propose an algorithm named Network Embedding for node Clustering (NEC) to learn network embedding for node clustering in attributed graphs. Specifically, the presented work introduces a framework that simultaneously learns graph structure-based representations and clustering-oriented representations together. The framework consists of the following three modules: graph convolutional autoencoder module, soft modularity maximization module, and self-clustering module. Graph convolutional autoencoder module learns node embeddings based on topological structure and node attributes. We introduce soft modularity, which can be easily optimized using gradient descent algorithms, to exploit the community structure of networks. By integrating clustering loss and embedding loss, NEC can jointly optimize node cluster labels assignment and learn representations that keep local structure of network. This model can be effectively optimized using stochastic gradient algorithm. Empirical experiments on real-world networks and synthetic networks validate the feasibility and effectiveness of our algorithm on community detection task compared with network embedding based methods and traditional community detection methods.
机译:社区检测旨在将网络节点分为一组集群,使得节点在与其他簇相同的群集中更密集地彼此连接。对于属性网络,除了拓扑结构的密度要求之外,同一社区中的节点属性也应该是均匀的。已证明网络嵌入在各种任务中非常有用,例如节点分类,链接预测和图形可视化,但少数人的作品专用于针对群集任务指定的节点特征,这对于社区检测和图形聚类至关重要。通过使用k-means等群集算法的后处理,大多数现有网络嵌入方法都可以应用于群集任务。但是,学习嵌入的嵌入式不是用于聚类任务,它们只学习网络的拓扑和归因信息,并且没有探索面向聚类信息。在本文中,我们提出了一种名为Network嵌入节点群集(NEC)的算法,以学习归属图中的节点群集的网络嵌入。具体而言,所呈现的工作介绍了一个框架,它同时学习基于图形结构的表示和群集导向的表示。该框架包括以下三个模块:Graph卷积式AutoEncoder模块,软模块化最大化模块和自集群模块。图表卷积AutoEncoder模块基于拓扑结构和节点属性了解节点嵌入品。我们引入软模块化,可以使用梯度下降算法轻松优化,利用网络的社区结构。通过集群丢失和嵌入损失集成,NEC可以联合优化节点群集标签分配,并学习保留网络本地结构的表示。可以使用随机梯度算法有效地优化该模型。与基于网络嵌入的方法和传统社区检测方法相比,实证对现实网络和合成网络的实证实验验证了我们社区检测任务算法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号