首页> 外文期刊>ACM transactions on knowledge discovery from data >Enhanced Data Mining Technique to Measure Satisfaction Degree of Social Media Users of Xeljanz Drug
【24h】

Enhanced Data Mining Technique to Measure Satisfaction Degree of Social Media Users of Xeljanz Drug

机译:增强数据挖掘技术,以衡量Xeljanz药物的社交媒体用户满意度

获取原文
获取原文并翻译 | 示例

摘要

In the recent times, social media has become important in the field of health care as a major resource of valuable health information. Social media can provide massive amounts of data in real-time through user interaction, and this data can be analysed to reflect the harms and benefits of treatment by using the personal health experiences of users to improve health outcomes. In this study, we propose an enhanced data mining framework for analysing user opinions on Twitter and on a health-care forum. The proposed framework measures the degree of satisfaction of consumers regarding the drug Xeljanz, which is used to treat rheumatoid arthritis. The proposed framework is based on seven steps distributed in two phases. The first phase involves aggregating data related to the drug Xeljanz. This data is pre-processed to produce a list of words with a term frequency-inverse document frequency score. The word list is then classified into the following three categories: positive, negative and neutral. The second phase involves modelling social media posts using network analysis, identifying sub-graphs, calculating average opinions and detecting influential users. The results showed 77.3% user satisfaction with Xeljanz. Positive opinions were especially pronounced among users who switched to Xeljanz based on advice from a physician. Negative opinions of Xeljanz typically pertained to the high cost of the drug.
机译:最近,社会媒体在医疗保健领域变得重要,作为宝贵的健康信息的主要资源。社交媒体可以通过用户互动实时提供大量数据,并且可以分析该数据以反映通过使用用户的个人健康经验来改善健康结果的治疗的危害和益处。在这项研究中,我们提出了一个增强的数据挖掘框架,用于分析推特和医疗保健论坛的用户意见。拟议的框架测量了关于药物Xeljanz的消费者满意度,用于治疗类风湿性关节炎。所提出的框架基于分布在两个阶段的七个步骤。第一阶段涉及聚合与药物Xeljanz相关的数据。预先处理该数据以产生具有术语频率逆文档频率分数的单词列表。然后将单词列表分类为以下三类:正,负和中性。第二阶段涉及使用网络分析来建立社交媒体帖子,识别子图,计算平均意见和检测有影响的用户。结果表明,与Xeljanz的用户满意度显示了77.3%。基于医生的建议,在切换到Xeljanz的用户之间的积极意见特别明显。 Xeljanz的负面意见通常与药物的高成本有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号