首页> 外文期刊>ACM transactions on knowledge discovery from data >A Framework for Computing the Privacy Scores of Users in Online Social Networks
【24h】

A Framework for Computing the Privacy Scores of Users in Online Social Networks

机译:在线社交网络中用户隐私分数计算框架

获取原文
获取原文并翻译 | 示例

摘要

A large body of work has been devoted to address corporate-scale privacy concerns related to social networks. Most of this work focuses on how to share social networks owned by organizations without revealing the identities or the sensitive relationships of the users involved. Not much attention has been given to the privacy risk of users posed by their daily information-sharing activities. In this article, we approach the privacy issues raised in online social networks from the individual users' viewpoint: we propose a framework to compute the privacy score of a user. This score indicates the user's potential risk caused by his or her participation in the network. Our definition of privacy score satisfies the following intuitive properties: the more sensitive information a user discloses, the higher his or her privacy risk. Also, the more visible the disclosed information becomes in the network, the higher the privacy risk. We develop mathematical models to estimate both sensitivity and visibility of the information. We apply our methods to synthetic and real-world data and demonstrate their efficacy and practical utility.
机译:致力于解决与社交网络有关的企业范围的隐私问题的工作量很大。大部分工作集中在如何共享组织拥有的社交网络而又不透露所涉及用户的身份或敏感关系的情况下。日常信息共享活动对用户的隐私风险并未给予太多关注。在本文中,我们从个人用户的角度处理在线社交网络中提出的隐私问题:我们提出了一个框架来计算用户的隐私评分。该分数表示用户因其参与网络而引起的潜在风险。我们对隐私分数的定义满足以下直观属性:用户披露的敏感信息越多,其隐私风险就越高。同样,公开的信息在网络中越可见,隐私风险就越高。我们开发数学模型来估计信息的敏感性和可见性。我们将我们的方法应用于合成和现实世界的数据,并证明它们的功效和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号