首页> 外文期刊>ACM transactions on knowledge discovery from data >Instance Annotation for Multi-Instance Multi-Label Learning
【24h】

Instance Annotation for Multi-Instance Multi-Label Learning

机译:多实例多标签学习的实例注释

获取原文
获取原文并翻译 | 示例

摘要

Multi-instance multi-label learning (MIML) is a framework for supervised classification where the objects to be classified are bags of instances associated with multiple labels. For example, an image can be represented as a bag of segments and associated with a list of objects it contains. Prior work on MIML has focused on predicting label sets for previously unseen bags. We instead consider the problem of predicting instance labels while learning from data labeled only at the bag level. We propose a regularized rank-loss objective designed for instance annotation, which can be instantiated with different aggregation models connecting instance-level labels with bag-level label sets. The aggregation models that we consider can be factored as a linear function of a "support instance" for each class, which is a single feature vector representing a whole bag. Hence we name our proposed methods rank-loss Support Instance Machines (SIM). We propose two optimization methods for the rank-loss objective, which is nonconvex. One is a heuristic method that alternates between updating support instances, and solving a convex problem in which the support instances are treated as constant. The other is to apply the constrained concave-convex procedure (CCCP), which can also be interpreted as iteratively updating support instances and solving a convex problem. To solve the convex problem, we employ the Pegasos framework of primal subgradient descent, and prove that it finds an ∈-suboptimal solution in runtime that is linear in the number of bags, instances, and 1/∈ Additionally, we suggest a method of extending the linear learning algorithm to nonlinear classification, without increasing the runtime asymptotically. Experiments on artificial and real-world datasets including images and audio show that the proposed methods achieve higher accuracy than other loss functions used in prior work, e.g., Hamming loss, and recent work in ambiguous label classification.
机译:多实例多标签学习(MIML)是用于监督分类的框架,其中要分类的对象是与多个标签相关联的实例包。例如,图像可以表示为一包段,并与其包含的对象列表相关联。 MIML的先前工作主要集中在预测以前看不见的袋子的标签集。我们取而代之的是考虑从仅在包装袋级别标记的数据中学习时预测实例标签的问题。我们提出了一种针对实例注释设计的规范化秩损失目标,可以使用将实例级标签与袋级标签集连接起来的不同聚合模型来实例化该对象。我们认为的聚集模型可以作为每个类的“支持实例”的线性函数进行分解,它是代表整个袋子的单个特征向量。因此,我们将提议的方法命名为秩损失支持实例机(SIM)。我们针对秩损失目标提出了两种非凸优化方法。一种是启发式方法,该方法在更新支持实例和解决将支持实例视为常量的凸问题之间交替。另一种方法是应用约束凹凸程序(CCCP),这也可以解释为迭代更新支撑实例并解决凸问题。为了解决凸问题,我们采用了原始次梯度下降的Pegasos框架,并证明它在运行时找到了一个袋次,实例数和1 /ε线性的∈次优解。此外,我们建议了一种方法将线性学习算法扩展到非线性分类,而无需逐渐增加运行时间。在包括图像和音频的人工和现实世界数据集上的实验表明,与先前工作中使用的其他损失函数(例如汉明损失)和不明确的标签分类的最新工作相比,所提出的方法具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号