...
首页> 外文期刊>ACM transactions on knowledge discovery from data >Ranking Causal Anomalies for System Fault Diagnosis via Temporal and Dynamical Analysis on Vanishing Correlations
【24h】

Ranking Causal Anomalies for System Fault Diagnosis via Temporal and Dynamical Analysis on Vanishing Correlations

机译:通过消失相关性的时间和动力学分析对系统故障诊断进行因果排序

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Detecting system anomalies is an important problem in many fields such as security, fault management, and industrial optimization. Recently, invariant network has shown to be powerful in characterizing complex system behaviours. In the invariant network, a node represents a system component and an edge indicates a stable, significant interaction between two components. Structures and evolutions of the invariance network, in particular the vanishing correlations, can shed important light on locating causal anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with the invariant network often use the percentage of vanishing correlations to rank possible casual components, which have several limitations: (1) fault propagation in the network is ignored, (2) the root casual anomalies may not always be the nodes with a high percentage of vanishing correlations, (3) temporal patterns of vanishing correlations are not exploited for robust detection, and (4) prior knowledge on anomalous nodes are not exploited for (semi-) supervised detection. To address these limitations, in this article we propose a network diffusion based framework to identify significant causal anomalies and rank them. Our approach can effectively model fault propagation over the entire invariant network and can perform joint inference on both the structural and the time-evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that are truly responsible for the vanishing correlations and can compensate for unstructured measurement noise in the system. Moreover, when the prior knowledge on the anomalous status of some nodes are available at certain time points, our approach is able to leverage them to further enhance the anomaly inference accuracy. When the prior knowledge is noisy, our approach also automatically learns reliable information and reduces impacts from noises. By performing extensive experiments on synthetic datasets, bank information system datasets, and coal plant cyber-physical system datasets, we demonstrate the effectiveness of our approach.
机译:检测系统异常是安全,故障管理和工业优化等许多领域中的重要问题。近来,不变网络已显示出在表征复杂系统行为方面的强大功能。在不变网络中,节点表示系统组件,边缘表示两个组件之间的稳定,重要的交互作用。不变性网络的结构和演化,尤其是消失的相关性,可以为定位因果异常和执行诊断提供重要的启示。但是,现有的使用不变网络检测因果异常的方法通常使用消失的相关性百分比来对可能的偶然分量进行排名,这有几个局限性:(1)网络中的故障传播被忽略;(2)根本的偶然异常可能不会被忽略始终是消失相关性百分比很高的节点,(3)消失相关性的时间模式不会被用于鲁棒检测,(4)异常节点的先验知识不会被用于(半)监督检测。为了解决这些限制,在本文中,我们提出了一个基于网络扩散的框架,以识别重大的因果异常并对它们进行排名。我们的方法可以有效地对整个不变网络上的故障传播进行建模,并且可以对结构和随时间变化的破碎不变模式进行联合推断。因此,它可以定位真正导致消失的相关性的高置信度异常,并可以补偿系统中非结构化的测量噪声。此外,当在某些时间点可以获得有关某些节点异常状态的先验知识时,我们的方法便能够利用它们来进一步提高异常推断的准确性。当先验知识嘈杂时,我们的方法还将自动学习可靠的信息并减少噪声的影响。通过对合成数据集,银行信息系统数据集和燃煤电厂网络物理系统数据集进行广泛的实验,我们证明了该方法的有效性。

著录项

  • 来源
    《ACM transactions on knowledge discovery from data》 |2017年第4期|40.1-40.28|共28页
  • 作者单位

    NEC Labs Amer, 4 Independence Way,Suite 200, Princeton, NJ 08540 USA;

    Penn State Univ, Coll Informat Sci & Technol, 332 Informat Sci & Technol Bldg, University Pk, PA 16802 USA;

    NEC Labs Amer, 4 Independence Way,Suite 200, Princeton, NJ 08540 USA;

    NEC Labs Amer, 4 Independence Way,Suite 200, Princeton, NJ 08540 USA;

    NEC Labs Amer, 4 Independence Way,Suite 200, Princeton, NJ 08540 USA;

    Univ Illinois, Dept Comp Sci, 201 North Goodwin Ave, Urbana, IL 61801 USA;

    Penn State Univ, Coll Informat Sci & Technol, 332 Informat Sci & Technol Bldg, University Pk, PA 16802 USA;

    Univ Calif Los Angeles, Dept Comp Sci, 3531-G Boelter Hall, Los Angeles, CA 90095 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Causal anomalies ranking; label propagation; nonnegative matrix factorization;

    机译:因果异常排序;标签传播;负矩阵分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号