首页> 外文期刊>ACM transactions on knowledge discovery from data >Large-Scale Bayesian Probabilistic Matrix Factorization with Memo-Free Distributed Variational Inference
【24h】

Large-Scale Bayesian Probabilistic Matrix Factorization with Memo-Free Distributed Variational Inference

机译:无备忘录分布变分推断的大规模贝叶斯概率矩阵分解

获取原文
获取原文并翻译 | 示例

摘要

Bayesian Probabilistic Matrix Factorization (BPMF) is a powerful model in many dyadic data prediction problems. especially the applications of Recommender system. However, its poor scalability has limited its wide applications on massive data. Based on the conditional independence property of observed entries in BPMF model, we propose a novel distributed memo-free variational inference method for large-scale matrix factorization problems. Compared with the state-of-the-art methods, the proposed method is favored for several attractive properties. Specifically, it does not require tuning of learning rate carefully, shuffling the training set at each iteration, or storing massive redundant variables, and can introduce new agents into the computations on the fly. We conduct extensive experiments on both synthetic and real-world datasets. The experimental results show that our method can converge significantly faster with better prediction performance than alternative algorithms.
机译:贝叶斯概率矩阵分解(BPMF)是许多二元数据预测问题中的强大模型。特别是Recommender系统的应用。但是,可伸缩性差,限制了它在海量数据上的广泛应用。基于BPMF模型中观测项的条件独立性,针对大规模矩阵分解问题,提出了一种新的分布式无备忘录变分推断方法。与最新技术相比,该方法具有多种吸引人的特性。具体而言,它不需要仔细调整学习率,在每次迭代时改组训练集或存储大量冗余变量,并且可以在运行中将新的代理引入计算中。我们对合成数据集和真实数据集进行了广泛的实验。实验结果表明,与其他算法相比,我们的方法可以更快地收敛,并且具有更好的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号