首页> 外文期刊>ACM transactions on knowledge discovery from data >Leveraging Neighbor Attributes for Classification in Sparsely Labeled Networks
【24h】

Leveraging Neighbor Attributes for Classification in Sparsely Labeled Networks

机译:利用稀疏标记网络中的邻居属性进行分类

获取原文
获取原文并翻译 | 示例

摘要

(LBC) has studied how to leverage these connections to improve classification accuracy. Most such prior research has assumed the provision of a densely labeled training network. Instead, this article studies the common and challenging case when LBC must use a single sparsely labeled network for both learning and inference, a case where existing methods often yield poor accuracy. To address this challenge, we introduce a novel method that enables prediction via “neighbor attributes,” which were briefly considered by early LBC work but then abandoned due to perceived problems. We then explain, using both extensive experiments and loss decomposition analysis, how using neighbor attributes often significantly improves accuracy. We further show that using appropriate semi-supervised learning (SSL) is essential to obtaining the best accuracy in this domain and that the gains of neighbor attributes remain across a range of SSL choices and data conditions. Finally, given the challenges of label sparsity for LBC and the impact of neighbor attributes, we show that multiple previous studies must be re-considered, including studies regarding the best model features, the impact of noisy attributes, and strategies for active learning.
机译:(LBC)研究了如何利用这些连接来提高分类准确性。大多数此类现有研究都假设提供了一个标记密集的培训网络。相反,本文研究了LBC必须同时使用一个稀疏标记的网络进行学习和推理的常见且具有挑战性的情况,在这种情况下,现有方法通常会产生较差的准确性。为了应对这一挑战,我们引入了一种新颖的方法,该方法可以通过“邻居属性”进行预测,这在早期LBC工作中曾短暂考虑过,但由于感知到的问题而被放弃。然后,我们将通过广泛的实验和损耗分解分析来说明如何使用邻居属性通常可以显着提高准确性。我们进一步表明,使用适当的半监督学习(SSL)对于在此域中获得最佳准确性至关重要,并且邻居属性的收益仍在一系列SSL选择和数据条件下保持不变。最后,考虑到标签稀疏性对LBC的挑战以及邻居属性的影响,我们表明必须重新考虑多个先前的研究,包括有关最佳模型特征,噪声属性的影响以及主动学习策略的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号