首页> 外文期刊>ACM transactions on knowledge discovery from data >Road Network Construction with Complex Intersections Based on Sparsely Sampled Private Car Trajectory Data
【24h】

Road Network Construction with Complex Intersections Based on Sparsely Sampled Private Car Trajectory Data

机译:基于稀疏采样私家车轨迹数据的复杂交叉口道路网络建设

获取原文
获取原文并翻译 | 示例

摘要

A road network is a critical aspect of both urban planning and route recommendation. This article proposes an efficient approach to build a fine-grained road network based on sparsely sampled private car trajectory data under complex urban environment. In order to resolve difficulties introduced by low sampling rate trajectory data, we concentrate sample points around intersections by utilizing the turning characteristics from the large-scale trajectory data to ensure the accuracy of the detection of intersections and road segments. In front of complex road networks including many complex intersections, such as the overpasses and underpasses, we first layer intersections into major and minor one, and then propose a simplified representation of intersections and corresponding computable model based on the features of roads, which can significantly improve the accuracy of detected road networks, especially for the complex intersections. In order to construct fine-grained road networks, we distinguish various types of intersections using direction information and detected turning limit. To the best of our knowledge, our road network building method is the first time to give fine-grained road networks based on low-sampling rate private car trajectory data, especially able to infer the location of complex intersections and its connections to other intersections. Last but not the least, we propose an effective parameter selection process for the Density-Based Spatial Clustering of Applications with Noise based clustering algorithm, which is used to implement the reliable intersection detection. Extensive evaluations are conducted based on a real-world trajectory dataset from 1,345 private cars in Futian district, Shenzhen city of China. The results demonstrate the effectiveness of the proposed method. The constructed road network matches close to the one from a public editing map OpenStreetMap, especially the location of the road intersections and road segments, which achieves 92.2% intersections within 20m and 91.6% road segments within 8m.
机译:道路网络是城市规划和路线推荐的关键方面。本文提出了一种在复杂的城市环境下,基于稀疏采样的私家车轨迹数据,建立细粒度道路网络的有效方法。为了解决低采样率轨迹数据带来的困难,我们利用大规模轨迹数据的转向特性,将交叉点周围的采样点集中起来,以确保交叉口和路段检测的准确性。在包括许多复杂交叉路口(例如高架桥和地下通道)的复杂道路网络的前面,我们将交叉路口分为主要和次要交叉路口,然后根据道路的特征提出交叉路口的简化表示形式和相应的可计算模型,这可以显着地提高了检测到的道路网络的准确性,尤其是对于复杂的十字路口。为了构建细粒度的路网,我们使用方向信息和检测到的转弯限制来区分各种类型的交叉路口。据我们所知,我们的道路网络构建方法是首次基于低采样率私家车轨迹数据提供细粒度的道路网络,特别是能够推断出复杂路口的位置及其与其他路口的连接。最后但并非最不重要的一点,我们提出了一种基于噪声的聚类算法,用于基于密度的应用程序空间聚类的有效参数选择过程,用于实现可靠的路口检测。基于来自中国深圳市福田区的1,345辆私家车的真实轨迹数据集,进行了广泛的评估。结果证明了该方法的有效性。所构建的道路网络与公共编辑地图OpenStreetMap中的道路网络相匹配,尤其是道路交叉口和路段的位置,在20m内实现92.2%的交叉路口,在8m内实现91.6%的路段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号