首页> 外文期刊>ACM transactions on knowledge discovery from data >Detecting and Assessing Anomalous Evolutionary Behaviors of Nodes in Evolving Social Networks
【24h】

Detecting and Assessing Anomalous Evolutionary Behaviors of Nodes in Evolving Social Networks

机译:在不断发展的社交网络中检测和评估节点的异常进化行为

获取原文
获取原文并翻译 | 示例

摘要

Based on the performance of entire social networks, anomaly analysis for evolving social networks generally ignores the otherness of the evolutionary behaviors of different nodes, such that it is difficult to precisely identify the anomalous evolutionary behaviors of nodes (AEBN). Assuming that a node's evolutionary behavior that generates and removes edges normally follows stable evolutionary mechanisms, this study focuses on detecting and assessing AEBN, whose evolutionary mechanisms deviate from their past mechanisms, and proposes a link prediction detection (LPD) method and a matrix perturbation assessment (MPA) method. LPD describes a node's evolutionary behavior by fitting its evolutionary mechanism, and designs indexes for edge generation and removal to evaluate the extent to which the evolutionary mechanism of a node's evolutionary behavior can be fitted by a link prediction algorithm. Furthermore, it detects AEBN by quantifying the differences among behavior vectors that characterize the node's evolutionary behaviors in different periods. In addition, MPA considers AEBN as a perturbation of the social network structure, and quantifies the effect of AEBN on the social network structure based on matrix perturbation analysis. Extensive experiments on eight disparate real-world networks demonstrate that analyzing AEBN from the perspective of evolutionary mechanisms is important and beneficial.
机译:基于整个社交网络的性能,对不断发展的社交网络的异常分析通常会忽略不同节点的进化行为的另一性,从而难以精确识别节点的异常进化行为(AEBN)。假设节点的生成和移除边缘的进化行为通常遵循稳定的进化机制,因此本研究着重于检测和评估AEBN(其进化机制与过去的机制有所不同),并提出了链路预测检测(LPD)方法和矩阵扰动评估(MPA)方法。 LPD通过拟合节点的进化机制来描述节点的进化行为,并设计边缘生成和移除的索引,以评估链接预测算法可以在多大程度上拟合节点的进化行为的进化机制。此外,它通过量化表征节点在不同时期的进化行为的行为向量之间的差异来检测AEBN。此外,MPA将AEBN视为对社交网络结构的扰动,并基于矩阵扰动分析来量化AEBN对社交网络结构的影响。在八个不同的现实世界网络上进行的大量实验表明,从进化机制的角度分析AEBN是重要且有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号