首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Transfer Learning for Semisupervised Collaborative Recommendation
【24h】

Transfer Learning for Semisupervised Collaborative Recommendation

机译:半监督协作推荐的转移学习

获取原文
获取原文并翻译 | 示例

摘要

Users' online behaviors such as ratings and examination of items are recognized as one of the most valuable sources of information for learning users' preferences in order to make personalized recommendations. But most previous works focus on modeling only one type of users' behaviors such as numerical ratings or browsing records, which are referred to as explicit feedback and implicit feedback, respectively. In this article, we study a Semisupervised Collaborative Recommendation (SSCR) problem with labeled feedback (for explicit feedback) and unlabeled feedback (for implicit feedback), in analogy to the well-known Semisupervised Learning (SSL) setting with labeled instances and unlabeled instances. SSCR is associated with two fundamental challenges, that is, heterogeneity of two types of users' feedback and uncertainty of the unlabeled feedback. As a response, we design a novel Self-Transfer Learning (sTL) algorithm to iteratively identify and integrate likely positive unlabeled feedback, which is inspired by the general forward/backward process in machine learning. The merit of sTL is its ability to learn users' preferences from heterogeneous behaviors in a joint and selective manner. We conduct extensive empirical studies of sTL and several very competitive baselines on three large datasets. The experimental results show that our sTL is significantly better than the state-of-the-art methods.
机译:用户的在线行为(例如,评分和项目检查)被认为是最有价值的信息来源之一,可用于学习用户的偏好以提出个性化建议。但是,大多数以前的工作只着重于对一种类型的用户行为进行建模,例如数字评分或浏览记录,分别称为显式反馈和隐式反馈。在本文中,我们研究带有标记反馈(用于显式反馈)和未标记反馈(用于隐式反馈)的半监督协作推荐(SSCR)问题,类似于众所周知的带有标记实例和未标记实例的半监督学习(SSL)设置。 SSCR与两个基本挑战相关,即两种类型的用户反馈的异质性和未标记反馈的不确定性。作为回应,我们设计了一种新颖的自传学习(sTL)算法,以迭代方式识别和整合可能的未标记正反馈,这受到了机器学习中一般向前/向后过程的启发。 sTL的优点在于它能够以联合和选择性的方式从异构行为中学习用户的偏好。我们在三个大型数据集上对sTL和几个非常有竞争力的基准进行了广泛的经验研究。实验结果表明,我们的sTL明显优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号