首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Active Learning and Visual Analytics for Stance Classification with ALVA
【24h】

Active Learning and Visual Analytics for Stance Classification with ALVA

机译:使用ALVA进行姿态分类的主动学习和视觉分析

获取原文
获取原文并翻译 | 示例

摘要

The automatic detection and classification of stance (e.g., certainty or agreement) in text data using natural language processing and machine-learning methods creates an opportunity to gain insight into the speakers' attitudes toward their own and other people's utterances. However, identifying stance in text presents many challenges related to training data collection and classifier training. To facilitate the entire process of training a stance classifier, we propose a visual analytics approach, called ALVA, for text data annotation and visualization. ALVA's interplay with the stance classifier follows an active learning strategy to select suitable candidate utterances for manual annotaion. Our approach supports annotation process management and provides the annotators with a clean user interface for labeling utterances with multiple stance categories. ALVA also contains a visualization method to help analysts of the annotation and training process gain a better understanding of the categories used by the annotators. The visualization uses a novel visual representation, called CatCombos, which groups individual annotation items by the combination of stance categories. Additionally, our system makes a visualization of a vector space model available that is itself based on utterances. ALVA is already being used by our domain experts in linguistics and computational linguistics to improve the understanding of stance phenomena and to build a stance classifier for applications such as social media monitoring.
机译:使用自然语言处理和机器学习方法自动检测和分类文本数据中的立场(例如确定性或一致性),为了解发言人对自己和他人话语的态度提供了机会。然而,在文本中识别立场提出了与训练数据收集和分类器训练有关的许多挑战。为了促进训练姿势分类器的整个过程,我们提出了一种称为ALVA的可视化分析方法,用于文本数据注释和可视化。 ALVA与姿势分类器的相互作用遵循一种主动的学习策略,可以为手动注释选择合适的候选发音。我们的方法支持注释过程管理,并为注释者提供一个干净的用户界面,用于标记具有多种立场类别的言论。 ALVA还包含一种可视化方法,可帮助注释分析人员和培训过程更好地了解注释者使用的类别。可视化使用一种称为CatCombos的新颖的视觉表示形式,它通过姿势类别的组合将各个注释项分组。此外,我们的系统还提供了可视化的矢量空间模型,该模型本身基于语音。我们的领域专家已经在语言学和计算语言学领域使用ALVA来增进对姿势现象的理解,并为诸如社交媒体监控之类的应用构建姿势分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号