首页> 外文期刊>ACM transactions on intelligent systems >Exploiting User Preference for Online Learning in Web Content Optimization Systems
【24h】

Exploiting User Preference for Online Learning in Web Content Optimization Systems

机译:在Web内容优化系统中利用用户偏好进行在线学习

获取原文
获取原文并翻译 | 示例

摘要

Web portal services have become an important medium to deliver digital content (e.g. news, advertisements, etc.) to Web users in a timely fashion. To attract more users to various content modules on the Web portal, it is necessary to design a recommender system that can effectively achieve Web portal content optimization by automatically estimating content item attractiveness and relevance to user interests. The state-of-the-art online learning methodology adapts dedicated pointwise models to independently estimate the attractiveness score for each candidate content item. Although such pointwise models can be easily adapted for online recommendation, there still remain a few critical problems. First, this pointwise methodology fails to use invaluable user preferences between content items. Moreover, the performance of pointwise models decreases drastically when facing the problem of sparse learning samples. To address these problems, we propose exploring a new dynamic pairwise learning methodology for Web portal content optimization in which we exploit dynamic user preferences extracted based on users' actions on portal services to compute the attractiveness scores of content items. In this article, we introduce two specific pairwise learning algorithms, a straightforward graph-based algorithm and a formalized Bayesian modeling one. Experiments on large-scale data from a commercial Web portal demonstrate the significant improvement of pairwise methodologies over the baseline pointwise models. Further analysis illustrates that our new pairwise learning approaches can benefit personalized recommendation more than pointwise models, since the data sparsity is more critical for personalized content optimization.
机译:Web门户服务已成为一种重要的媒介,可以及时地向Web用户交付数字内容(例如新闻,广告等)。为了将更多的用户吸引到Web门户上的各种内容模块,有必要设计一种推荐系统,该推荐器系统可以通过自动估计内容项的吸引力和与用户兴趣的相关性来有效地实现Web门户内容的优化。最新的在线学习方法采用专用的逐点模型来独立估计每个候选内容项的吸引力得分。尽管此类点对点模型可以轻松地进行在线推荐,但仍然存在一些关键问题。首先,这种逐点方法无法在内容项之间使用宝贵的用户偏好。此外,当面对稀疏学习样本的问题时,逐点模型的性能将急剧下降。为了解决这些问题,我们建议探索一种用于Web门户内容优化的新的动态成对学习方法,其中我们利用基于用户对门户服务的操作提取的动态用户偏好来计算内容项的吸引力得分。在本文中,我们介绍两种特定的成对学习算法,一种是基于图的简单算法,另一种是形式化的贝叶斯建模算法。来自商业Web门户的大规模数据的实验表明,成对的方法论比基线的点对模型有了显着的改进。进一步的分析表明,我们的新的成对学习方法比点对模型更能受益于个性化推荐,因为数据稀疏性对于个性化内容优化更为关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号