首页> 外文期刊>ACM transactions on intelligent systems >S-SMART: A Unified Bayesian Framework for Simultaneous Semantic Mapping, Activity Recognition, and Tracking
【24h】

S-SMART: A Unified Bayesian Framework for Simultaneous Semantic Mapping, Activity Recognition, and Tracking

机译:S-SMART:用于同步语义映射,活动识别和跟踪的统一贝叶斯框架

获取原文
获取原文并翻译 | 示例

摘要

The machine recognition of user trajectories and activities is fundamental to devise context-aware applications for support and monitoring in daily life. So far, tracking and activity recognition were mostly considered as orthogonal problems, which limits the richness of possible context inference. In this work, we introduce the novel unified computational and representational framework S-SMART that simultaneously models the environment state (semantic mapping), localizes the user within this map (tracking), and recognizes interactions with the environment (activity recognition). Thus, S-SMART identifies which activities the user executes where (e.g., turning a handle next to a window), and reflects the outcome of these actions by updating the world model (e.g., the window is now open). This in turn conditions the future possibility of executing actions at specific places (e.g., closing the window is likely to be the next action at this location). S-SMART works in a self-contained manner and iteratively builds the semantic map from wearable sensors only. This enables the seamless deployment to new environments.
机译:对用户轨迹和活动的机器识别是设计上下文感知应用程序以在日常生活中提供支持和监视的基础。到目前为止,跟踪和活动识别通常被认为是正交问题,这限制了可能的上下文推断的丰富性。在这项工作中,我们介绍了新颖的统​​一计算和表示框架S-SMART,该框架同时对环境状态建模(语义映射),在此地图内定位用户(跟踪),并识别与环境的交互(活动识别)。因此,S-SMART识别用户在何处执行哪些活动(例如,将手柄旋转到窗口旁边),并通过更新世界模型(例如,现在打开窗口)来反映这些动作的结果。反过来,这限制了将来在特定位置执行动作的可能性(例如,关闭窗口很可能是该位置的下一个动作)。 S-SMART以自包含的方式工作,并且仅通过可穿戴传感器迭代地构建语义图。这样可以无缝部署到新环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号