首页> 外文期刊>ACM transactions on intelligent systems and technology >DeepKey: A Multimodal Biometric Authentication System via Deep Decoding Gaits and Brainwaves
【24h】

DeepKey: A Multimodal Biometric Authentication System via Deep Decoding Gaits and Brainwaves

机译:Deepkey:通过深解码Gaits和BrainWaves的多模态生物认证系统

获取原文
获取原文并翻译 | 示例

摘要

Biometric authentication involves various technologies to identify individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, traditional biometric authentication systems (e.g., face recognition, iris, retina, voice, and fingerprint) are at increasing risks of being tricked by biometric tools such as anti-surveillance masks, contact lenses, vocoder, or fingerprint films. In this article, we design a multimodal biometric authentication system named DeepKey, which uses both Electroencephalography (EEG) and gait signals to better protect against such risk. DeepKey consists of two key components: an Invalid ID Filter Model to block unauthorized subjects, and an identification model based on attention-based Recurrent Neural Network (RNN) to identify a subject's EEG IDs and gait IDs in parallel. The subject can only be granted access while all the components produce consistent affirmations to match the user's proclaimed identity. We implement DeepKey with a live deployment in our university and conduct extensive empirical experiments to study its technical feasibility in practice. DeepKey achieves the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) of 0 and 1.0%, respectively. The preliminary results demonstrate that DeepKey is feasible, shows consistent superior performance compared to a set of methods, and has the potential to be applied to the authentication deployment in real-world settings.
机译:生物识别认证涉及通过利用其独特,可衡量的生理和行为特征来识别个人的各种技术。然而,传统的生物识别认证系统(例如,面部识别,虹膜,视网膜,语音和指纹)正在增加由生物识别工具欺骗的风险,例如防监控掩模,隐形眼镜,声码器或指纹膜。在本文中,我们设计了一个名为DeepKey的多模式生物认证系统,它使用脑电图(EEG)和步态信号来更好地防止这种风险。 DeepKey由两个关键组件组成:无效的ID滤波器模型,用于阻止未经授权的主题,以及基于基于关注的经常性神经网络(RNN)的识别模型,以识别并行主体的EEG ID和步态ID。只有授权访问权限,而所有组件都会产生一致的肯定以匹配用户宣布的身份。我们在大学的实时部署中实现了Deepkey,并进行了广泛的实验实验,以研究其在实践中的技术可行性。 Deepkey分别实现了错误的验收率(远)和错误拒绝率(FRR)分别为0和1.0%。初步结果表明,与一组方法相比,DeepKey是可行的,表现出一致的卓越性能,并且有可能应用于现实世界中的认证部署。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号