首页> 外文期刊>ACM transactions on intelligent systems >On Incremental High Utility Sequential Pattern Mining
【24h】

On Incremental High Utility Sequential Pattern Mining

机译:增量式高实用顺序模式挖掘

获取原文
获取原文并翻译 | 示例

摘要

High utility sequential pattern (HUSP) mining is an emerging topic in pattern mining, and only a few algorithms have been proposed to address it. In practice, most sequence databases usually grow over time, and it is inefficient for existing algorithms to mine HUSPs from scratch when databases grow with a small portion of updates. In view of this, we propose the IncUSP-Miner(+) algorithm to mine HUSPs incrementally. Specifically, to avoid redundant re-computations, we propose a tighter upper bound of the utility of a sequence, called Tight Sequence Utility (TSU), and then we design a novel data structure, called the candidate pattern tree, to buffer the sequences whose TSU values are greater than or equal to the minimum utility threshold in the original database. Accordingly, to avoid keeping a huge amount of utility information for each sequence, a set of concise utility information is designed to be stored in each tree node. To improve the mining efficiency, several strategies are proposed to reduce the amount of computation for utility update and the scopes of database scans. Moreover, several strategies are also proposed to properly adjust the candidate pattern tree for the support of multiple database updates. Experimental results on some real and synthetic datasets show that IncUSP-Miner + is able to efficiently mine HUSPs incrementally.
机译:高效序模式(HUSP)挖掘是模式挖掘中的一个新兴主题,仅提出了几种算法来解决它。实际上,大多数序列数据库通常会随着时间的增长而增长,并且当数据库仅包含少量更新时,现有算法无法从头开始挖掘HUSP。有鉴于此,我们提出了IncUSP-Miner(+)算法来逐步挖掘HUSP。具体来说,为避免重复计算,我们提出了一个更严格的序列效用上限,即紧紧序列效用(TSU),然后设计了一种新颖的数据结构,称为候选模式树,以缓冲其序列TSU值大于或等于原始数据库中的最小实用程序阈值。因此,为了避免为每个序列保留大量的实用信息,将一组简洁的实用信息设计为存储在每个树节点中。为了提高挖掘效率,提出了几种策略来减少实用程序更新的计算量和数据库扫描的范围。此外,还提出了几种策略来适当地调整候选模式树,以支持多个数据库更新。在一些真实数据集和合成数据集上的实验结果表明,IncUSP-Miner +能够有效地逐步挖掘HUSP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号