首页> 外文期刊>ACM transactions on intelligent systems >Automatic Extraction of Behavioral Patterns for Elderly Mobility and Daily Routine Analysis
【24h】

Automatic Extraction of Behavioral Patterns for Elderly Mobility and Daily Routine Analysis

机译:自动提取老年人活动的行为模式并进行日常例行分析

获取原文
获取原文并翻译 | 示例

摘要

The elderly living in smart homes can have their daily movement recorded and analyzed. As different elders can have their own living habits, a methodology that can automatically identify their daily activities and discover their daily routines will be useful for better elderly care and support. In this article, we focus on automatic detection of behavioral patterns from the trajectory data of an individual for activity identification as well as daily routine discovery. The underlying challenges lie in the need to consider longer-range dependency of the sensor triggering events and spatiotemporal variations of the behavioral patterns exhibited by humans. We propose to represent the trajectory data using a behavior-aware flow graph that is a probabilistic finite state automaton with its nodes and edges attributed with some local behavior-aware features. We identify the underlying subflows as the behavioral patterns using the kernel k-means algorithm. Given the identified activities, we propose a novel nominal matrix factorization method under a Bayesian framework with Lasso to extract highly interpretable daily routines. For empirical evaluation, the proposed methodology has been compared with a number of existing methods based on both synthetic and publicly available real smart home datasets with promising results obtained. We also discuss how the proposed unsupervised methodology can be used to support exploratory behavior analysis for elderly care.
机译:生活在智能家居中的老年人可以记录和分析他们的日常活动。由于不同的老年人可以有自己的生活习惯,因此可以自动识别其日常活动并发现其日常活动的方法将有助于更好地照顾和支持老年人。在本文中,我们专注于从个人的轨迹数据自动检测行为模式,以进行活动识别以及日常例行发现。潜在的挑战在于需要考虑传感器触发事件​​的更远距离依赖性以及人类表现出的行为模式的时空变化。我们建议使用行为感知流程图来表示轨迹数据,该流程图是概率有限状态自动机,其节点和边具有某些局部行为感知功能。我们使用内核k均值算法将底层子流识别为行为模式。鉴于已确定的活动,我们提出了在具有套索的贝叶斯框架下提出一种新颖的名义矩阵分解方法,以提取高度可解释的日常活动。为了进行实证评估,将所提出的方法与基于合成和可公开获得的真实智能家居数据集的许多现有方法进行了比较,并获得了有希望的结果。我们还将讨论所提出的无监督方法可如何用于支持老年人护理的探索性行为分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号