首页> 外文期刊>ACM transactions on intelligent systems >ResumeVis: A Visual Analytics System to Discover Semantic Information in Semi-structured Resume Data
【24h】

ResumeVis: A Visual Analytics System to Discover Semantic Information in Semi-structured Resume Data

机译:ResumeVis:一种可视化分析系统,可在半结构化简历数据中发现语义信息

获取原文
获取原文并翻译 | 示例

摘要

Massive public resume data emerging on the internet indicates individual-related characteristics in terms of profile and career experiences. Resume Analysis (RA) provides opportunities for many applications, such as recruitment trend predict, talent seeking and evaluation. Existing RA studies either largely rely on the knowledge of domain experts, or leverage classic statistical or data mining models to identify and filter explicit attributes based on pre-defined rules. However, they fail to discover the latent semantic information from semi-structured resume text, i.e., individual career progress trajectory and social-relations, which are otherwise vital to comprehensive understanding of people's career evolving patterns. Besides, when dealing with large numbers of resumes, how to properly visualize such semantic information to reduce the information load and to support better human cognition is also challenging.To tackle these issues, we propose a visual analytics system called ResumeVis to mine and visualize resume data. First, a text mining-based approach is presented to extract semantic information. Then, a set of visualizations are devised to represent the semantic information in multiple perspectives. Through interactive exploration on ResumeVis performed by domain experts, the following tasks can be accomplished: to trace individual career evolving trajectory; to mine latent social-relations among individuals; and to hold the full picture of massive resumes' collective mobility. Case studies with over 2,500 government officer resumes demonstrate the effectiveness of our system.
机译:互联网上出现的大量公共简历数据表明,个人资料与个人资料和职业经历有关。简历分析(RA)为许多应用程序提供了机会,例如招聘趋势预测,人才寻找和评估。现有的RA研究要么主要依靠领域专家的知识,要么利用经典的统计或数据挖掘模型基于预定义的规则来识别和过滤显式属性。但是,他们无法从半结构化简历文本中发现潜在的语义信息,即个人职业发展轨迹和社会关系,否则对于全面理解人们的职业发展模式至关重要。此外,在处理大量简历时,如何恰当地可视化此类语义信息以减少信息负荷并支持更好的人类认知也面临着挑战。针对这些问题,我们提出了一种名为ResumeVis的可视化分析系统来挖掘和可视化简历数据。首先,提出了一种基于文本挖掘的方法来提取语义信息。然后,设计了一组可视化以从多个角度表示语义信息。通过领域专家对ResumeVis的交互式探索,可以完成以下任务:跟踪个人职业发展轨迹;挖掘个人之间潜在的社会关系;并全面掌握大量简历的集体流动情况。超过2500名政府官员简历的案例研究证明了我们系统的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号