首页> 外文期刊>ACM transactions on intelligent systems >Deep Multi-scale Discriminative Networks for Double JPEG Compression Forensics
【24h】

Deep Multi-scale Discriminative Networks for Double JPEG Compression Forensics

机译:用于双JPEG压缩取证的深度多尺度判别网络

获取原文
获取原文并翻译 | 示例

摘要

As JPEG is the most widely used image format, the importance of tampering detection for JPEG images in blind forensics is self-evident. In this area, extracting effective statistical characteristics from a JPEG image for classification remains a challenge. Effective features are designed manually in traditional methods, suggesting that extensive labor-consuming research and derivation is required. In this article, we propose a novel image tampering detection method based on deep multi-scale discriminative networks (MSD-Nets). The multi-scale module is designed to automatically extract multiple features from the discrete cosine transform (DCT) coefficient histograms of the JPEG image. This module can capture the characteristic information in different scale spaces. In addition, a discriminative module is also utilized to improve the detection effect of the networks in those difficult situations when the first compression quality (QF1) is higher than the second one (QF2). A special network in this module is designed to distinguish the small statistical difference between authentic and tampered regions in these cases. Finally, a probability map can be obtained and the specific tampering area is located using the last classification results. Extensive experiments demonstrate the superiority of our proposed method in both quantitative and qualitative metrics when compared with state-of-the-art approaches.
机译:由于JPEG是使用最广泛的图像格式,因此在盲法鉴证中篡改检测JPEG图像的重要性是不言而喻的。在这一领域,从JPEG图像中提取有效的统计特征进行分类仍然是一个挑战。有效功能是通过传统方法手动设计的,这表明需要进行大量耗时的研究和推导。在本文中,我们提出了一种基于深度多尺度判别网络(MSD-Nets)的新型图像篡改检测方法。多尺度模块旨在从JPEG图像的离散余弦变换(DCT)系数直方图中自动提取多个特征。该模块可以捕获不同尺度空间中的特征信息。此外,在第一压缩质量(QF1)高于第二压缩质量(QF2)的那些困难情况下,判别模块还用于提高网络的检测效果。在此模块中,专门设计了一个网络来区分这种情况下真实区域和篡改区域之间的微小统计差异。最终,可以获取一个概率图,并使用最后的分类结果来定位特定的篡改区域。大量实验证明,与最新方法相比,我们提出的方法在定量和定性指标上均具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号