首页> 外文期刊>ACM Transactions on Information Systems >Behavioral Dynamics on the Web: Learning, Modeling, and Prediction
【24h】

Behavioral Dynamics on the Web: Learning, Modeling, and Prediction

机译:Web上的行为动力学:学习,建模和预测

获取原文
获取原文并翻译 | 示例

摘要

The queries people issue to a search engine and the results clicked following a query change over time. For example, after the earthquake in Japan in March 2011, the query japan spiked in popularity and people issuing the query were more likely to click government-related results than they would prior to the earthquake. We explore the modeling and prediction of such temporal patterns in Web search behavior. We develop a temporal modeling framework adapted from physics and signal processing and harness it to predict temporal patterns in search behavior using smoothing, trends, periodicities, and surprises. Using current and past behavioral data, we develop a learning procedure that can be used to construct models of users' Web search activities. We also develop a novel methodology that learns to select the best prediction model from a family of predictive models for a given query or a class of queries. Experimental results indicate that the predictive models significantly outperform baseline models that weight historical evidence the same for all queries. We present two applications where new methods introduced for the temporal modeling of user behavior significantly improve upon the state of the art. Finally, we discuss opportunities for using models of temporal dynamics to enhance other areas of Web search and information retrieval.
机译:人们向搜索引擎发出的查询以及查询随时间变化后点击的结果。例如,在2011年3月日本发生地震后,日本的查询量激增,发出查询的人比地震前更容易点击与政府相关的结果。我们探索在网络搜索行为中这种时间模式的建模和预测。我们开发了一个基于物理学和信号处理的时间建模框架,并利用它来平滑,趋势,周期性和意外事件,从而预测搜索行为的时间模式。利用当前和过去的行为数据,我们开发了一种学习程序,可用于构建用户Web搜索活动的模型。我们还开发了一种新颖的方法,可以学习从给定查询或一类查询的预测模型族中选择最佳的预测模型。实验结果表明,对于所有查询而言,预测模型的权重历史证据均明显优于基线模型。我们介绍了两个应用程序,其中针对用户行为的时间建模引入的新方法在现有技术上有了显着改善。最后,我们讨论了使用时态动力学模型来增强Web搜索和信息检索的其他领域的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号