首页> 外文期刊>ACM Transactions on Information Systems >Faceted Search with Object Ranking and Answer Size Constraints
【24h】

Faceted Search with Object Ranking and Answer Size Constraints

机译:与对象排名和答案大小约束的面部搜索

获取原文
获取原文并翻译 | 示例

摘要

Faceted Search is a widely used interaction scheme in digital libraries, e-commerce, and recently also in Linked Data. Surprisingly, object ranking in the context of Faceted Search is not well studied in the literature. In this article, we propose an extension of the model with two parameters that enable specifying the desired answer size and the granularity of the sought object ranking. These parameters allow tackling the problem of too big or too small answers and can specify how refined the sought ranking should be. Then, we provide an algorithm that takes as input these parameters and by considering the hard-constraints (filters), the soft-constraints (preferences), as well as the statistical properties of the dataset (through various frequency-based ranking schemes), produces an object ranking that satisfies these parameters, in a transparent way for the user. Then, we present extensive simulation-based evaluation results that provide evidence that the proposed model also improves the answers and reduces the user's cost. Finally, we propose GUI extensions that are required and present an implementation of the model.
机译:刻面搜索是数字图书馆,电子商务的广泛使用的交互方案,最近也在链接数据中。令人惊讶的是,在整个搜索的背景下的对象排名在文献中没有很好地研究。在本文中,我们提出了具有两个参数的模型的扩展,使得能够指定所需的答案大小和所寻求的对象排名的粒度。这些参数允许解决太大或太小的答案问题,并且可以指定如何改进寻求的排名。然后,我们提供一种算法,它用作输入这些参数,并通过考虑硬度约束(滤波器),软约束(偏好)以及数据集的统计特性(通过各种基于频率的排名方案),以透明的方式生成满足这些参数的对象排名。然后,我们呈现了广泛的基于模拟的评估结果,提供了证据表明所提出的模型也提高了答案并降低了用户的成本。最后,我们提出了所需的GUI扩展并呈现模型的实现。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号