首页> 外文期刊>ACM Transactions on Information Systems >Learning Informative Priors from Heterogeneous Domains to Improve Recommendation in Cold-Start User Domains
【24h】

Learning Informative Priors from Heterogeneous Domains to Improve Recommendation in Cold-Start User Domains

机译:从异构域中学习信息化前沿,以改善冷启动用户域中的推荐

获取原文
获取原文并翻译 | 示例

摘要

In the real-world environment, users have sufficient experience in their focused domains but lack experience in other domains. Recommender systems are very helpful for recommending potentially desirable items to users in unfamiliar domains, and cross-domain collaborative filtering is therefore an important emerging research topic. However, it is inevitable that the cold-start issue will be encountered in unfamiliar domains due to the lack of feedback data. The Bayesian approach shows that priors play an important role when there are insufficient data, which implies that recommendation performance can be significantly improved in cold-start domains if informative priors can be provided. Based on this idea, we propose a Weighted Irregular Tensor Factorization (WITF) model to leverage multi-domain feedback data across all users to learn the cross-domain priors w.r.t. both users and items. The features learned from WITF serve as the informative priors on the latent factors of users and items in terms of weighted matrix factorization models. Moreover, WITF is a unified framework for dealing with both explicit feedback and implicit feedback. To prove the effectiveness of our approach, we studied three typical real-world cases in which a collection of empirical evaluations were conducted on real-world datasets to compare the performance of our model and other state-of-the-art approaches. The results show the superiority of our model over comparison models.
机译:在真实世界的环境中,用户在他们的聚焦域中拥有足够的经验,但在其他域名缺乏经验。建议系统对在不熟悉的域中推荐给用户的可能所需的项目非常有帮助,因此跨域协同过滤是一个重要的新兴的研究主题。但是,由于缺乏反馈数据,这是不可避免的,因为缺乏反馈数据,在陌生领域将遇到冷启动问题。贝叶斯方法表明,当数据不足时,前沿发挥着重要作用,这意味着如果可以提供信息化前沿,则可以在冷启动域中显着提高推荐性能。基于此思想,我们提出了一种加权不规则张量因子(WITF)模型,以利用所有用户利用多域反馈数据来学习跨域Priors W.R.T.用户和项目。从Witf中学到的特征是在加权矩阵分解模型方面作为用户和项目潜在因素的信息。此外,Witf是一个统一的框架,用于处理显式反馈和隐式反馈。为了证明我们的方法的有效性,我们研究了三个典型的现实世界案例,其中在现实世界数据集中进行了一系列经验评估,以比较我们模型和其他最先进的方法的表现。结果显示了我们模型的比较模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号