首页> 外文期刊>ACM Transactions on Information Systems >Local Variational Feature-Based Similarity Models for Recommending Top-N New Items
【24h】

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items

机译:基于局部变分特征的相似模型推荐前N个新项目

获取原文
获取原文并翻译 | 示例

摘要

The top-N recommendation problem has been studied extensively. Item-based collaborative filtering recommendation algorithms show promising results for the problem. They predict a user's preferences by estimating similarities between a target and user-rated items. Top-N recommendation remains a challenging task in scenarios where there is a lack of preference history for new items. Feature-based Similarity Models (FSMs) address this particular problem by extending item-based collaborative filtering by estimating similarity functions of item features. The quality of the estimated similarity function determines the accuracy of the recommendation. However, existing FSMs only estimate global similarity functions; i.e., they estimate using preference information across all users. Moreover, the estimated similarity functions are linear, hence, they may fail to capture the complex structure underlying item features.In this article, we propose to improve FSMs by estimating local similarity functions, where each function is estimated for a subset of like-minded users. To capture global preference patterns, we extend the global similarity function from linear to nonlinear, based on the effectiveness of variational autoencoders. We propose a Bayesian generative model, called the Local Variational Feature-based Similarity Model, to encapsulate local and global similarity functions. We present a variational Expectation Minimization algorithm for efficient approximate inference. Extensive experiments on a large number of real-world datasets demonstrate the effectiveness of our proposed model.
机译:top-N推荐问题已被广泛研究。基于项目的协作过滤推荐算法显示了该问题的有希望的结果。他们通过估计目标和用户评分项目之间的相似性来预测用户的偏好。在缺少新商品的偏好历史记录的情况下,Top-N推荐仍然是一项艰巨的任务。基于特征的相似度模型(FSM)通过估计项特征的相似度功能来扩展基于项的协作筛选,从而解决了这一特定问题。估计的相似度函数的质量决定了推荐的准确性。但是,现有的FSM仅估算全局相似性函数;即,他们估计在所有用户中使用偏好信息。此外,估计的相似度函数是线性的,因此,它们可能无法捕获项目特征下的复杂结构。在本文中,我们建议通过估计局部相似度函数来改进FSM,其中每个函数都是针对志同道合的子集进行估计的用户。为了捕获全局偏好模式,基于变分自动编码器的有效性,我们将全局相似性函数从线性扩展为非线性。我们提出了一种贝叶斯生成模型,称为基于局部变化特征的相似性模型,以封装局部和全局相似性函数。我们提出了一种有效的近似推断的变分期望最小化算法。在大量实际数据集上的大量实验证明了我们提出的模型的有效性。

著录项

  • 来源
    《ACM Transactions on Information Systems》 |2020年第2期|12.1-12.33|共33页
  • 作者

  • 作者单位

    Univ Amsterdam Amsterdam Netherlands;

    Hefei Univ Technol Minist Educ Key Lab Knowledge Engn Big Data Hefei Peoples R China;

    Natl Univ Def Technol Changsha Peoples R China;

    Univ Queensland Brisbane Qld Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Top-N recommendation; item cold-start; item feature; deep generative model;

    机译:前N名推荐;项目冷启动;项目特征;深度生成模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号