首页> 外文期刊>ACM Transactions on Information Systems >KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge
【24h】

KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge

机译:KNET:使用形态学知识学习单词嵌入的通用框架

获取原文
获取原文并翻译 | 示例

摘要

Neural network techniques are widely applied to obtain high-quality distributed representations of words (i.e., word embeddings) to address text mining, information retrieval, and natural language processing tasks. Most recent efforts have proposed several efficient methods to learn word embeddings from context such that they can encode both semantic and syntactic relationships between words. However, it is quite challenging to handle unseen or rare words with insufficient context. Inspired by the study on the word recognition process in cognitive psychology, in this article, we propose to take advantage of seemingly less obvious but essentially important morphological knowledge to address these challenges. In particular, we introduce a novel neural network architecture called KNET that leverages both words' contextual information and morphological knowledge to learn word embeddings. Meanwhile, this new learning architecture is also able to benefit from noisy knowledge and balance between contextual information and morphological knowledge. Experiments on an analogical reasoning task and a word similarity task both demonstrate that the proposed KNET framework can greatly enhance the effectiveness of word embeddings.
机译:神经网络技术被广泛应用于获得单词的高质量分布式表示(即单词嵌入)以解决文本挖掘,信息检索和自然语言处理任务。最近的努力提出了几种有效的方法来从上下文中学习单词嵌入,以便它们可以对单词之间的语义和句法关系进行编码。但是,在上下文不充分的情况下处理看不见或稀有的单词非常具有挑战性。受认知心理学中单词识别过程研究的启发,在本文中,我们建议利用看似不太明显但本质上很重要的形态学知识来应对这些挑战。特别是,我们介绍了一种称为KNET的新型神经网络体系结构,该体系结构同时利用单词的上下文信息和形态学知识来学习单词嵌入。同时,这种新的学习体系结构还可以受益于嘈杂的知识以及上下文信息和形态知识之间的平衡。在类比推理任务和单词相似性任务上的实验都表明,提出的KNET框架可以大大提高单词嵌入的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号