首页> 外文期刊>ACM Transactions on Information Systems >Memory-Augmented Dialogue Management for Task-Oriented Dialogue Systems
【24h】

Memory-Augmented Dialogue Management for Task-Oriented Dialogue Systems

机译:面向任务的对话系统的内存增强对话管理

获取原文
获取原文并翻译 | 示例

摘要

Dialogue management (DM) is responsible for predicting the next action of a dialogue system according to the current dialogue state and thus plays a central role in task-oriented dialogue systems. Since DM requires having access not only to local utterances but also to the global semantics of the entire dialogue session, modeling the long-range history information is a critical issue. To this end, we propose MAD, a novel memory-augmented dialogue management model that employs a memory controller and two additional memory structures (i.e., a slot-value memory and an external memory). The slot-value memory tracks the dialogue state by memorizing and updating the values of semantic slots (i.e., cuisine, price, and location), and the external memory augments the representation of hidden states of traditional recurrent neural networks by storing more context information. To update the dialogue state efficiently, we also propose slot-level attention on user utterances to extract specific semantic information for each slot. Experiments show that our model can obtain state-of-the-art performance and outperforms existing baselines.
机译:对话管理(DM)负责根据当前对话状态预测对话系统的下一个动作,因此在面向任务的对话系统中起着核心作用。由于DM不仅需要访问本地话语,还需要访问整个对话会话的全局语义,因此对远程历史信息进行建模是一个关键问题。为此,我们提出了MAD,这是一种新颖的内存增强对话管理模型,该模型采用了一个内存控制器和两个附加的内存结构(即插槽值内存和一个外部内存)。槽值存储器通过存储和更新语义槽的值(即美食,价格和位置)来跟踪对话状态,而外部存储器通过存储更多上下文信息来增强传统循环神经网络的隐藏状态表示。为了有效地更新对话状态,我们还建议对用户话语进行时隙级别的关注,以提取每个时隙的特定语义信息。实验表明,我们的模型可以获得最先进的性能,并且优于现有基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号