首页> 外文期刊>ACM Transactions on Information Systems >Deep Item-based Collaborative Filtering for Top-N Recommendation
【24h】

Deep Item-based Collaborative Filtering for Top-N Recommendation

机译:用于Top-N推荐的基于项目的深度协作过滤

获取原文
获取原文并翻译 | 示例

摘要

Item-based Collaborative Filtering (ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationships between items, which are insufficient to capture the complicated decision-making process of users.In this article, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationships among items. Going beyond modeling only the second-order interaction (e.g., similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. By doing this, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user's profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.
机译:基于项目的协作过滤(ICF)由于其在用户兴趣建模方面的优势以及易于在线个性化的特性,已在行业推荐系统中被广泛采用。通过使用用户已消费的商品构造用户的个人资料,ICF会推荐与用户的个人资料相似的商品。近年来,随着机器学习的盛行,通过从数据中学习项目相似性(或表示形式),ICF已经有了重要的过程。尽管如此,我们认为大多数现有工作仅考虑了项目之间的线性和浅层关系,不足以捕捉用户的复杂决策过程。本文通过考虑非线性和较高的非线性,提出了一种更具表现力的ICF解决方案项之间的顺序关系。除了仅建模两个项目之间的二阶交互作用(例如,相似性)之外,我们还使用非线性神经网络来考虑所有交互项对之间的交互作用。通过这样做,我们可以有效地建模项目之间的高阶关系,从而捕获用户决策中更复杂的影响。例如,它可以区分用户资料中的哪些历史项集在影响用户对某项商品做出购买决定时更为重要。我们将此解决方案视为ICF的深层变体,因此将其称为DeepICF。为了证明我们的建议的正确性,我们对来自MovieLens和Pinterest的两个公共数据集进行了实证研究。大量的实验证明了使用非线性神经网络进行高阶项目交互建模的高度积极作用。此外,我们证明,通过使用注意力网络进行更细粒度的二阶交互建模,可以进一步改善DeepICF方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号