首页> 外文期刊>ACM Transactions on Graphics >Differentiable Vector Graphics Rasterization for Editing and Learning
【24h】

Differentiable Vector Graphics Rasterization for Editing and Learning

机译:用于编辑和学习的可微分矢量图形光栅化

获取原文
获取原文并翻译 | 示例

摘要

We introduce a differentiable rasterizer that bridges the vector graphics andraster image domains, enabling powerful raster-based loss functions, optimizationprocedures, and machine learning techniques to edit and generatevector content.We observe that vector graphics rasterization is differentiableafter pixel prefiltering. Our differentiable rasterizer offers two prefiltering options:an analytical prefiltering technique and a multisampling anti-aliasingtechnique. The analytical variant is faster but can suffer from artifacts suchas conflation. The multisampling variant is still efficient, and can renderhigh-quality images while computing unbiased gradients for each pixel withrespect to curve parameters.We demonstrate that our rasterizer enables new applications, includinga vector graphics editor guided by image metrics, a painterly renderingalgorithm that fits vector primitives to an image by minimizing a deepperceptual loss function, new vector graphics editing algorithms that exploitwell-known image processing methods such as seam carving, and deepgenerative models that generate vector content from raster-only supervisionunder a VAE or GAN training objective.
机译:我们介绍了一个可怜的光栅化器,可以桥接矢量图形和光栅图像域,实现基于光栅的强大损耗功能,优化编辑和生成的程序和机器学习技巧矢量内容。我们观察到矢量图形光栅化是可差异的在像素预热之后。我们可辨别的光栅用品提供两种预过滤器选项:分析预过滤技术和多相抗锯齿技术。分析变体更快,但可能遭受伪像作为混合。多相采样变量仍然有效,并且可以呈现高质量的图像,同时计算每个像素的非偏见渐变尊重曲线参数。我们展示了我们的光栅化器使新的应用程序能够实现新的应用程序,包括由图像指标引导的矢量图形编辑器,绘制渲染通过最大限度地减少深度来拟合矢量原语的算法感知损失函数,新矢量图形编辑算法利用众所周知的图像处理方法,如缝雕,深生成模型,从栅格监管生成矢量内容在VAE或GaN训练目标下。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号