首页> 外文期刊>ACM Transactions on Graphics >ShapeAssembly: Learning to Generate Programs for 3D Shape Structure Synthesis
【24h】

ShapeAssembly: Learning to Generate Programs for 3D Shape Structure Synthesis

机译:ShapeAsmbly:学习为3D形状结构合成生成程序

获取原文
获取原文并翻译 | 示例

摘要

Manually authoring 3D shapes is difficult and time consuming; generativemodels of 3D shapes offer compelling alternatives. Procedural representationsare one such possibility: they offer high-quality and editable resultsbut are difficult to author and often produce outputs with limited diversity.On the other extreme are deep generative models: given enough data, theycan learn to generate any class of shape but their outputs have artifacts andthe representation is not editable.In this paper, we take a step towards achieving the best of both worldsfor novel 3D shape synthesis. First, we propose ShapeAssembly, a domainspecific“assembly-language” for 3D shape structures. ShapeAssembly programsconstruct shape structures by declaring cuboid part proxies and attachingthem to one another, in a hierarchical and symmetrical fashion. ShapeAssemblyfunctions are parameterized with continuous free variables,so that one program structure is able to capture a family of related shapes.We show how to extract ShapeAssembly programs from existing shapestructures in the PartNet dataset. Then, we train a deep generative model, ahierarchical sequence VAE, that learns to write novel ShapeAssembly programs.Our approach leverages the strengths of each representation: theprogram captures the subset of shape variability that is interpretable andeditable, and the deep generative model captures variability and correlationsacross shape collections that is hard to express procedurally.We evaluate our approach by comparing the shapes output by our generatedprograms to those from other recent shape structure synthesis models.We find that our generated shapes are more plausible and physically-validthan those of other methods. Additionally, we assess the latent spaces ofthese models, and find that ours is better structured and produces smootherinterpolations. As an application, we use our generative model and differentiableprogram interpreter to infer and fit shape programs to unstructuredgeometry, such as point clouds.
机译:手动创作3D形状是困难和耗时的;生成的3D形状的模型提供了引人注目的替代品。程序表示是一种这样的可能性:它们提供高质量和可编辑的结果但是难以作者,并且经常产生有限的多样性输出。另一个极端是深度生成型号:给予足够的数据,他们可以学习生成任何形状,但它们的输出都有伪像和表示不可编辑。在本文中,我们迈出了实现两全其美的迈出用于新型3D形状合成。首先,我们提出塑造,一个穹顶特异性3D形状的“汇编语言”。 shapeaembly计划通过声明长方体部分代理和附加构造形状结构他们彼此以分层和对称的方式。 shapeasembly功能是参数化的,使用连续自由变量,因此,一个程序结构能够捕获一个相关形状的系列。我们展示了如何从现有形状提取ShapeAsmbly程序Partnet数据集中的结构。然后,我们训练一个深入的生成模式,一个分层序列VAE,它学会编写新颖的ShapeAsmbly程序。我们的方法利用每个代表的优势:程序捕获可解释的形状变异性的子集可编辑,深度生成模型捕获变异性和相关性横跨形状收集,很难在程序上表达。我们通过比较我们生成的形状输出来评估我们的方法从其他最近的形状结构合成模型的程序。我们发现我们所生成的形状更加合理和物理有效比其他方法。此外,我们还评估了潜在的空间这些模型,并发现我们的结构更好,并产生更平滑的插值。作为应用程序,我们使用我们的生成模型和可微分程序解释器推断和将形状程序拟合到非结构化几何,例如点云。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号