首页> 外文期刊>ACM Transactions on Graphics >Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering
【24h】

Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering

机译:辐射反向化:闪电快速可分辨率渲染的伴随方法

获取原文
获取原文并翻译 | 示例

摘要

Physically based diffierentiable rendering has recently evolved into a powerfultool for solving inverse problems involving light. Methods in this area performa diffierentiable simulation of the physical process of light transport andscattering to estimate partial derivatives relating scene parameters to pixelsin the rendered image. Together with gradient-based optimization, such algorithmshave interesting applications in diverse disciplines, e.g., to improvethe reconstruction of 3D scenes, while accounting for interreection andtransparency, or to design meta-materials with specified optical properties.The most versatile diffierentiable rendering algorithms rely on reversemodediffierentiation to compute all requested derivatives at once, enablingoptimization of scene descriptions with millions of free parameters. However,a severe limitation of the reverse-mode approach is that it requiresa detailed transcript of the computation that is subsequently replayed toback-propagate derivatives to the scene parameters. The transcript of typicalrenderings is extremely large, exceeding the available system memory bymany orders of magnitude, hence current methods are limited to simplescenes rendered at low resolutions and sample counts.We introduce radiative backpropagation, a fundamentally diffierent approachto diffierentiable rendering that does not require a transcript, greatlyimproving its scalability and eciency. Our main insight is that reversemodepropagation through a rendering algorithm can be interpreted as thesolution of a continuous transport problem involving the partial derivative ofradiance with respect to the optimization objective. This quantity is “emittedâ€by sensors, “scattered†by the scene, and eventually “received†by objectswith diffierentiable parameters. Diffierentiable rendering then decomposesinto two separate primal and adjoint simulation steps that scale to complexscenes rendered at high resolutions. We also investigated biased variantsof this algorithm and find that they considerably improve both runtimeand convergence speed. We showcase an ecient GPU implementation ofradiative backpropagation and compare its performance and the quality ofits gradients to prior work.
机译:基于物理上的可实现的渲染最近被演变为一个强大的解决涉及光的逆问题的工具。该区域的方法执行可实现的光传输物理过程模拟散射以估计与像素相关的部分衍生物在渲染图像中。与基于梯度的优化一起,这样的算法在各种学科中具有有趣的应用,例如,改进重建3D场景,同时核算互感和透明度,或设计具有指定光学性质的元材料。最通用的差异化渲染算法依赖reverseMode泛化以一次计算所有所需的衍生工具,使能实现优化数百万免费参数的场景描述。然而,对反向模式方法的严重限制是它需要随后重放的计算的详细记录将衍生物的返回传播到场景参数。典型的成绩单渲染非常大,超出可用的系统内存许多数量级,因此目前的方法仅限于简单低分辨率和示例计数呈现的场景。我们引入了辐射反向化,一种从根本上差异的方法为了使得不需要成绩单的可实现趋势提高其可扩展性和效力。我们的主要洞察力是ReverseMode通过渲染算法传播可以解释为涉及偏衍生物的连续运输问题的解决方案关于优化目标的辐射。这个数量是 - emitedâ€通过传感器,“伪装的场景”,最终令人越来越多地了具有可实现的参数。可实现的渲染然后分解分为两个单独的原始和伴随模拟步骤,以便复杂在高分辨率下呈现的场景。我们还调查了偏见的变体在这个算法中发现它们大大改善了运行时和收敛速度。我们展示了一个Endient GPU的实施辐射反向化并比较其性能和质量它的渐变前往上班。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号