首页> 外文期刊>ACM Transactions on Graphics >Fabricable Eulerian Wires for 3D Shape Abstraction
【24h】

Fabricable Eulerian Wires for 3D Shape Abstraction

机译:用于3D形状抽象的可加工欧拉线

获取原文
获取原文并翻译 | 示例

摘要

We present a fully automatic method that finds a small number of machinefabricable wires with minimal overlap to reproduce a wire sculpture designas a 3D shape abstraction. Importantly, we consider non-planar wires, whichcan be fabricated by a wire bending machine, to enable efficient constructionof complex 3D sculptures that cannot be achieved by previous works. Wecall our wires Eulerian wires, since they are as Eulerian as possible withsmall overlap to form the target design together. Finding such Eulerian wiresis highly challenging, due to an enormous search space. After exploring avariety of optimization strategies, we formulate a population-based hybridmetaheuristic model, and design the join, bridge and split operators to refinethe solution wire sets in the population. We start the exploration of eachsolution wire set in a bottom-up manner, and adopt an adaptive simulatedannealing model to regulate the exploration. By further formulating a metamodel on top to optimize the cooling schedule, and precomputing fabricablesubwires, our method can efficiently find promising solutions with low wirecount and overlap in one to two minutes. We demonstrate the efficiency ofour method on a rich variety of wire sculptures, and physically fabricate severalof them. Our results show clear improvements over other optimizationalternatives in terms of solution quality, versatility, and scalability.
机译:我们提出了一种全自动方法,该方法可以找到少量具有最小重叠的可机加工电线,以将电线雕塑设计复制为3D形状抽象。重要的是,我们认为可以使用折弯机制造的非平面线材可以有效地构造复杂的3D雕塑,而这是以前的工作无法实现的。我们称我们的电线为欧拉线,因为它们越像欧拉线,重叠越小,以共同形成目标设计。由于巨大的搜索空间,要找到这样的欧拉wiresis极具挑战性。在探索了各种优化策略之后,我们制定了一个基于总体的混合元模型,并设计了连接,桥接和拆分算子以优化总体中的求解线集。我们以自下而上的方式开始探索每条解决方案导线,并采用自适应模拟退火模型来规范探索。通过在顶部进一步制定一个元模型以优化冷却时间表,并预先计算可制造的子线,我们的方法可以有效地找到线数少且在一到两分钟内重叠的有前途的解决方案。我们演示了我们的方法在各种钢丝雕塑上的效率,并实际制作了其中的几种。我们的结果表明,在解决方案质量,多功能性和可伸缩性方面,与其他优化方案相比有明显的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号