首页> 外文期刊>ACM Transactions on Graphics >LookinGood: Enhancing Performance Capture with Real-time Neural Re-Rendering
【24h】

LookinGood: Enhancing Performance Capture with Real-time Neural Re-Rendering

机译:LookinGood:通过实时神经重渲染增强性能捕获

获取原文
获取原文并翻译 | 示例

摘要

Motivated by augmented and virtual reality applications such as telepresence,there has been a recent focus in real-time performance capture of humansunder motion. However, given the real-time constraint, these systems oftensuffer from artifacts in geometry and texture such as holes and noise inthe final rendering, poor lighting, and low-resolution textures. We take thenovel approach to augment such real-time performance capture systemswith a deep architecture that takes a rendering from an arbitrary viewpoint,and jointly performs completion, super resolution, and denoising of theimagery in real-time. We call this approach neural (re-)rendering, and our live system “LookinGood". Our deep architecture is trained to produce highresolution and high quality images from a coarse rendering in real-time. First,we propose a self-supervised training method that does not require manualground-truth annotation. We contribute a specialized reconstruction errorthat uses semantic information to focus on relevant parts of the subject, e.g.the face. We also introduce a salient reweighing scheme of the loss functionthat is able to discard outliers. We specifically design the system for virtualand augmented reality headsets where the consistency between the left andright eye plays a crucial role in the final user experience. Finally, we generatetemporally stable results by explicitly minimizing the difference between twoconsecutive frames.We tested the proposed system in two different scenarios:one involving a single RGB-D sensor, and upper body reconstruction of anactor, the second consisting of full body 360◦ capture. Through extensiveexperimentation, we demonstrate how our system generalizes across unseensequences and subjects.
机译:受诸如网真之类的增强和虚拟现实应用程序的推动,近来人们对运动下的人类的实时性能捕获有了关注。但是,给定实时约束,这些系统通常会遭受几何形状和纹理伪影的影响,例如最终渲染中的孔洞和噪点,不良照明和低分辨率纹理。我们采用新颖的方法,通过具有深度架构的此类架构来增强此类实时性能捕获系统,该架构从任意角度进行渲染,并共同实时执行图像的完成,超分辨率和去噪。我们称这种方法为神经(重新)渲染,而我们的实时系统为“ LookinGood”,我们对深度架构进行了训练,可以从粗糙的渲染中实时生成高分辨率和高质量的图像,首先,我们提出了一种自我监督的训练方法我们使用人工信息专注于主题的相关部分(例如脸部),提出了一种特殊的重构错误,并且引入了一种损失函数的显着重称方案,该方案可以丢弃异常值。设计用于虚拟现实和增强现实头戴式耳机的系统,其中左右眼之间的一致性在最终用户体验中起着至关重要的作用;最后,我们通过显着最小化两个连续框架之间的差异来生成临时稳定的结果。 :一个涉及单个RGB-D传感器,并进行actor的上身重建,第二个包括完整的身体360度捕捉。通过广泛的实验,我们演示了我们的系统如何对未序列和主题进行概括。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号