首页> 外文期刊>ACM Transactions on Graphics >Factor Once: Reusing Cholesky Factorizations on Sub-Meshes
【24h】

Factor Once: Reusing Cholesky Factorizations on Sub-Meshes

机译:一次分解:在子网格上重用Cholesky分解

获取原文
获取原文并翻译 | 示例

摘要

A common operation in geometry processing is solving symmetric andpositive semi-definite systems on a subset of a mesh, with conditions for thevertices at the boundary of the region. This is commonly done by settingup the linear system for the sub-mesh, factorizing the system (potentiallyapplying preordering to improve sparseness of the factors), and then solvingby back-substitution. This approach suffers from a comparably high setupcost for each local operation. We propose to reuse factorizations definedon the full mesh to solve linear problems on sub-meshes. We show howan update on sparse matrices can be performed in a particularly efficientway to obtain the factorization of the operator on a sun-mesh significantlyoutperforming general factor updates and complete refactorization. Weanalyze the resulting speedup for a variety of situations and demonstratethat our method outperforms factorization of a new matrix by a factor of upto 10 while never being slower in our experiments.
机译:几何处理中的常见操作是在网格的子集上求解对称和正半定系统,条件是顶点在该区域的边界上。通常是通过为子网格设置线性系统,分解系统(可能应用预排序以提高因子的稀疏性),然后通过反替换来解决。对于每个本地操作,这种方法都遭受相当高的设置成本。我们建议重用在全网格上定义的分解来解决子网格上的线性问题。我们展示了如何以一种特别有效的方式对稀疏矩阵进行更新,以在显着优于一般因子更新和完全重构的情况下在太阳网上获得算子的因式分解。我们分析了各种情况下的加速结果,并证明了我们的方法比新矩阵的分解效率高10倍,而我们的实验却从未如此慢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号