首页> 外文期刊>ACM Transactions on Graphics >Photon surfaces for robust, unbiased volumetric density estimation
【24h】

Photon surfaces for robust, unbiased volumetric density estimation

机译:光子表面可实现可靠,无偏的体积密度估算

获取原文
获取原文并翻译 | 示例

摘要

We generalize photon planes to photon surfaces: a new family of unbiased volumetric density estimators which we combine using multiple importance sampling. To derive our new estimators, we start with the extended path integral which duplicates the vertex at the end of the camera and photon subpaths and couples them using a blurring kernel. To make our formulation unbiased, however, we use a delta kernel to couple these two end points. Unfortunately, sampling the resulting singular integral using Monte Carlo is impossible since the probability of generating a contributing light path by independently sampling the two subpaths is zero. Our key insight is that we can eliminate the delta kernel and make Monte Carlo estimation practical by integrating any three dimensions analytically, and integrating only the remaining dimensions using Monte Carlo. We demonstrate the practicality of this approach by instantiating a collection of estimators which analytically integrate the distance along the camera ray and two arbitrary sampling dimensions along the photon subpath (e.g., distance, direction, surface area). This generalizes photon planes to curved "photon surfaces", including new "photon cone", "photon cylinder", "photon sphere", and multiple new "photon plane" estimators. These estimators allow us to handle light paths not supported by photon planes, including single scattering, and surface-to-media transport. More importantly, since our estimators have complementary strengths due to analytically integrating different dimensions of the path integral, we can combine them using multiple importance sampling. This combination mitigates singularities present in individual estimators, substantially reducing variance while remaining fully unbiased. We demonstrate our improved estimators on a number of scenes containing homogeneous media with highly anisotropic phase functions, accelerating both multiple scattering and single scattering compared to prior techniques.
机译:我们将光子平面推广到光子表面:一个新的无偏体积密度估计器族,我们使用多重重要性抽样相结合。为了得出新的估计量,我们从扩展路径积分开始,该路径积分复制了相机和光子子路径末端的顶点,并使用模糊核将它们耦合。但是,为了使我们的公式不偏不倚,我们使用增量内核耦合这两个端点。不幸的是,不可能使用蒙特卡洛对所得的奇异积分进行采样,因为通过对两个子路径进行独立采样而产生贡献光路的可能性为零。我们的主要见识在于,我们可以消除三角洲核,并通过分析性地整合任意三个维度,并使用蒙特卡洛仅整合其余维度,从而使蒙特卡洛估计切实可行。我们通过实例化一组估计器来证明这种方法的实用性,这些估计器分析性地积分了沿照相机射线的距离和沿光子子路径的两个任意采样尺寸(例如,距离,方向,表面积)。这将光子平面推广到弯曲的“光子表面”,包括新的“光子锥”,“光子圆柱”,“光子球”和多个新的“光子平面”估计量。这些估计器使我们能够处理光子平面不支持的光路,包括单次散射和表面到介质的传输。更重要的是,由于我们的估计量具有互补的优势,这是由于对路径积分的不同维度进行了分析积分,因此我们可以使用多重重要性采样将它们组合起来。这种组合减轻了各个估计量中存在的奇异性,从而在保持完全无偏的同时大大减少了方差。我们在许多场景中展示了改进的估计器,这些场景包含具有高度各向异性的相函数的均质介质,与以前的技术相比,可以加速多次散射和一次散射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号