首页> 外文期刊>ACM Transactions on Graphics >Synthetic Defocus and Look-Ahead Autofocus for Casual Videography
【24h】

Synthetic Defocus and Look-Ahead Autofocus for Casual Videography

机译:合成散焦和超前自动对焦功能,适用于休闲摄像

获取原文
获取原文并翻译 | 示例

摘要

In cinema, large camera lenses create beautiful shallow depth of field (DOF), but make focusing difficult and expensive. Accurate cinema focus usually relies on a script and a person to control focus in realtime. Casual videographers often crave cinematic focus, but fail to achieve it. We either sacrifice shallow DOF, as in smartphone videos; or we struggle to deliver accurate focus, as in videos from larger cameras. This paper is about a new approach in the pursuit of cinematic focus for casual videography. We present a system that synthetically renders refocusable video from a deep DOF video shot with a smartphone, and analyzes future video frames to deliver context-aware autofocus for the current frame. To create refocusable video, we extend recent machine learning methods designed for still photography, contributing a new dataset for machine training, a rendering model better suited to cinema focus, and a filtering solution for temporal coherence. To choose focus accurately for each frame, we demonstrate autofocus that looks at upcoming video frames and applies AI-assist modules such as motion, face, audio and saliency detection. We also show that autofocus benefits from machine learning and a large-scale video dataset with focus annotation, where we use our RVR-LAAF GUI to create this sizable dataset efficiently. We deliver, for example, a shallow DOF video where the autofocus transitions onto each person before she begins to speak. This is impossible for conventional camera autofocus because it would require seeing into the future.
机译:在电影院中,大型摄像机镜头可产生美丽的浅景深(DOF),但使对焦困难且昂贵。准确的电影院聚焦通常取决于脚本和人员来实时控制聚焦。随便的摄像师通常渴望获得电影上的焦点,但未能达到目的。我们要么像智能手机视频那样牺牲浅景深;要么或像大型摄像机的视频一样,我们很难提供准确的焦点。本文是关于追求休闲摄影的电影焦点的一种新方法。我们提供了一种系统,该系统可以使用智能手机从深景深视频中合成渲染可重新聚焦的视频,并分析未来的视频帧以为当前帧提供上下文感知的自动聚焦。为了创建可重新聚焦的视频,我们扩展了为静态摄影设计的最新机器学习方法,为机器训练贡献了一个新的数据集,一个更适合电影焦点的渲染模型,以及一个用于时间相干性的过滤解决方案。为了准确地为每个帧选择焦点,我们演示了自动聚焦,它会查看即将到来的视频帧并应用AI辅助模块,例如运动,面部,音频和显着性检测。我们还展示了自动聚焦得益于机器学习和带有焦点注释的大规模视频数据集,在这里我们使用RVR-LAAF GUI有效地创建了这个可观的数据集。例如,我们提供了一个浅景深视频,在每个人开始讲话之前,自动对焦就会转移到每个人身上。对于传统的相机自动对焦,这是不可能的,因为这需要展望未来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号