首页> 外文期刊>ACM Transactions on Graphics >Robust Solving of Optical Motion Capture Data by Denoising
【24h】

Robust Solving of Optical Motion Capture Data by Denoising

机译:通过降噪来鲁棒地解决光学运动捕获数据

获取原文
获取原文并翻译 | 示例

摘要

Raw optical motion capture data often includes errors such as occluded markers, mislabeled markers, and high frequency noise or jitter. Typically these errors must be fixed by hand - an extremely time-consuming and tedious task. Due to this, there is a large demand for tools or techniques which can alleviate this burden. In this research we present a tool that sidesteps this problem, and produces joint transforms directly from raw marker data (a task commonly called "solving") in a way that is extremely robust to errors in the input data using the machine learning technique of denoising. Starting with a set of marker configurations, and a large database of skeletal motion data such as the CMU motion capture database [CMU 2013b], we synthetically reconstruct marker locations using linear blend skinning and apply a unique noise function for corrupting this marker data randomly removing and shifting markers to dynamically produce billions of examples of poses with errors similar to those found in real motion capture data. We then train a deep denoising feed-forward neural network to learn a mapping from this corrupted marker data to the corresponding transforms of the joints. Once trained, our neural network can be used as a replacement for the solving part of the motion capture pipeline, and, as it is very robust to errors, it completely removes the need for any manual clean-up of data. Our system is accurate enough to be used in production, generally achieving precision to within a few millimeters, while additionally being extremely fast to compute with low memory requirements.
机译:原始的光学运动捕获数据通常包含错误,例如标记被遮挡,标记不正确以及高频噪声或抖动。通常,这些错误必须手动解决-这是非常耗时且繁琐的任务。因此,迫切需要减轻这种负担的工具或技术。在这项研究中,我们提供了一种工具,该工具可避免该问题,并使用机器学习技术对输入数据中的错误极其鲁棒地从原始标记数据直接生成联合变换(通常称为“解决”任务)去噪从一组标记配置和一个大型骨骼运动数据数据库(例如CMU运动捕获数据库[CMU 2013b])开始,我们使用线性混合蒙皮合成重建标记位置,并应用独特的噪声函数破坏随机删除的该标记数据并移动标记以动态产生数十亿个姿势示例,这些姿势的错误类似于在真实运动捕获数据中发现的错误。然后,我们训练深度降噪前馈神经网络,以学习从此损坏的标记数据到关节的相应变换的映射。经过训练后,我们的神经网络可以替代运动捕捉管道的求解部分,并且由于它对错误非常可靠,因此完全消除了任何手动清理数据的需求。我们的系统足够精确,可以在生产中使用,通常可以达到几毫米以内的精度,同时在存储需求低的情况下可以非常快速地进行计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号