首页> 外文期刊>ACM Transactions on Graphics >Fast Parallel Surface and Solid Voxelization on GPUs
【24h】

Fast Parallel Surface and Solid Voxelization on GPUs

机译:GPU上的快速平行表面和实体体素化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents data-parallel algorithms for surface and solidrnvoxelization on graphics hardware. First, a novel conservativernsurface voxelization technique, setting all voxels overlapped by arnmesh’s triangles, is introduced, which is up to one order of magnitudernfaster than previous solutions leveraging the standard rasterizationrnpipeline. We then show how the involved new triangle/boxrnoverlap test can be adapted to yield a 6-separating surface voxelization,rnwhich is thinner but still connected and gap-free. Complementingrnthese algorithms, both a triangle-parallel and a tile-basedrntechnique for solid voxelization are subsequently presented. Finally,rnaddressing the high memory consumption of high-resolutionrnvoxel grids, we introduce a novel octree-based sparse solid voxelizationrnapproach, where only close to the solid’s boundary finestlevelrnvoxels are stored, whereas uniform interior and exterior regionsrnare represented by coarser-level voxels. This representationrnis created directly from a mesh without requiring a full intermediaternsolid voxelization, enabling GPU-based voxelizations of unprecedentedrnsize.
机译:本文提出了图形硬件上的曲面和实体素化的数据并行算法。首先,引入了一种新颖的保守曲面体素化技术,该技术将所有体素都由arnmesh的三角形重叠设置,比以前利用标准栅格化管线的解决方案快一个数量级。然后,我们展示了如何使用所涉及的新三角形/ boxrnoverlap测试来生成6个分隔的表面体素化,该体素较薄但仍保持连接且无间隙。随后提出了对这些算法的补充,包括用于固体体素化的三角形平行技术和基于图块的技术。最后,针对高分辨率rnvoxel网格的高内存消耗,我们引入了一种基于八叉树的稀疏固体体素化方法,该方法仅存储接近实体边界的最细像素体素,而内部和外部区域则由较粗糙的体素表示。这种表示法是直接从网格创建的,不需要进行完整的中间实体体素化,从而实现了前所未有的基于GPU的体素化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号