首页> 外文期刊>ACM Transactions on Graphics >Motion Graphs++: a Compact Generative Model for Semantic Motion Analysis and Synthesis
【24h】

Motion Graphs++: a Compact Generative Model for Semantic Motion Analysis and Synthesis

机译:运动图++:紧凑的生成模型,用于语义运动分析和合成

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new generative statistical model that allows for human motion analysis and synthesis at both semantic and kinematic levels. Our key idea is to decouple complex variations of human movements into finite structural variations and continuous style variations and encode them with a concatenation of morphable functional models. This allows us to model not only a rich repertoire of behaviors but also an infinite number of style variations within the same action. Our models are appealing for motion analysis and synthesis because they are highly structured, contact aware, and semantic embedding. We have constructed a compact generative motion model from a huge and heterogeneous motion database (about two hours mocap data and more than 15 different actions). We have demonstrated the power and effectiveness of our models by exploring a wide variety of applications, ranging from automatic motion segmentation, recognition, and annotation, and online/offline motion synthesis at both kinematics and behavior levels to semantic motion editing. We show the superiority of our model by comparing it with alternative methods.
机译:本文介绍了一种新的生成统计模型,该模型允许在语义和运动学层面上进行人体运动分析和合成。我们的关键思想是将人类动作的复杂变化分解为有限的结构变化和连续的样式变化,并使用可变形的功能模型进行编码。这使我们不仅可以对行为丰富的曲目进行建模,还可以对同一动作中的无数样式变化进行建模。我们的模型具有高度结构化,接触感知和语义嵌入的特性,因此吸引人进行运动分析和合成。我们已经从庞大而异类的运动数据库(大约两个小时的运动数据和超过15种不同的运动)构建了一个紧凑的生成运动模型。通过探索从自动运动分割,识别和注释以及运动学和行为级别的在线/离线运动合成到语义运动编辑的广泛应用,我们已经证明了模型的强大功能和有效性。通过与替代方法进行比较,我们展示了模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号