首页> 外文期刊>ACM Transactions on Graphics >A Unified Interpolator Subdivision Scheme for Quadrilateral Meshes
【24h】

A Unified Interpolator Subdivision Scheme for Quadrilateral Meshes

机译:四边形网格的统一插值器细分方案

获取原文
获取原文并翻译 | 示例

摘要

For approximating subdivision schemes, there are several unified frameworks for effectively constructing subdivision surfaces generalizing splines of an arbitrary degree. In this article, we present a similar unified framework for interpolator subdivision schemes. We first decompose the 2n-point interpolatory curve subdivision scheme into repeated local operations. By extending the repeated local operations to quadrilateral meshes, an efficient algorithm can be further derived for interpolatory surface subdivision. Depending on the number n of repeated local operations, the continuity of the limit curve or surface can be of an arbitrary order C~L, except in the surface case at a limited number of extraordinary vertices where C~1 continuity with bounded curvature is obtained. Boundary rules built upon repeated local operations are also presented.
机译:为了近似细分方案,有几个统一的框架可以有效地构造细分曲面,将任意程度的样条曲线泛化。在本文中,我们为插值器细分方案提供了一个类似的统一框架。我们首先将2n点插值曲线细分方案分解​​为重复的局部运算。通过将重复的局部运算扩展到四边形网格,可以进一步得出用于插值曲面细分的有效算法。取决于重复的局部操作的次数n,极限曲面或曲面的连续性可以为C〜L的任意数量级,但在有限数量的非寻常顶点的曲面情况下,其中C〜1的连续性为有界曲率。还提出了基于重复的本地操作的边界规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号