首页> 外文期刊>ACM Transactions on Graphics >Leveraging Depth Cameras and Wearable Pressure Sensors for Full-body Kinematics and Dynamics Capture
【24h】

Leveraging Depth Cameras and Wearable Pressure Sensors for Full-body Kinematics and Dynamics Capture

机译:利用深度相机和可穿戴压力传感器进行全身运动学和动力学捕获

获取原文
获取原文并翻译 | 示例

摘要

We present a new method for full-body motion capture that usesrninput data captured by three depth cameras and a pair of pressuresensingrnshoes. Our system is appealing because it is low-cost,rnnon-intrusive and fully automatic, and can accurately reconstructrnboth full-body kinematics and dynamics data. We first introduce arnnovel tracking process that automatically reconstructs 3D skeletalrnposes using input data captured by three Kinect cameras and wearablernpressure sensors. We formulate the problem in an optimizationrnframework and incrementally update 3D skeletal poses withrnobserved depth data and pressure data via iterative linear solvers.rnThe system is highly accurate because we integrate depth data fromrnmultiple depth cameras, foot pressure data, detailed full-body geometry,rnand environmental contact constraints into a unified framework.rnIn addition, we develop an efficient physics-based motionrnreconstruction algorithm for solving internal joint torques and contactrnforces in the quadratic programming framework. During reconstruction,rnwe leverage Newtonian physics, friction cone constraints,rncontact pressure information, and 3D kinematic poses obtainedrnfrom the kinematic tracking process to reconstruct full-bodyrndynamics data. We demonstrate the power of our approach by capturingrna wide range of human movements and achieve state-of-theartrnaccuracy in our comparison against alternative systems.
机译:我们提出一种用于全身运动捕捉的新方法,该方法使用由三个深度相机和一对压力传感鞋捕捉的输入数据。我们的系统之所以吸引人,是因为它是低成本,非介入式和全自动的,并且可以准确地重建全身运动学和动力学数据。我们首先介绍arnnovel跟踪过程,该过程使用三个Kinect相机和可穿戴压力传感器捕获的输入数据自动重建3D骨骼姿势。我们在优化框架中提出问题,并通过迭代线性求解器用观察到的深度数据和压力数据逐步更新3D骨骼姿势。该系统非常精确,因为我们集成了来自多个深度摄像头的深度数据,足部压力数据,详细的全身几何形状,环境此外,我们还开发了一种有效的基于物理学的运动重构算法,用于解决二次编程框架中的内部关节扭矩和接触力。在重建过程中,我们利用牛顿物理学,摩擦锥约束,接触压力信息以及从运动学跟踪过程获得的3D运动学姿势来重建全身动力学数据。我们通过捕获广泛的人类运动来证明我们的方法的力量,并在与替代系统的比较中达到了最新的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号