首页> 外文期刊>ACM Transactions on Graphics >Multi-Scale Label-Map Extraction for Texture Synthesis
【24h】

Multi-Scale Label-Map Extraction for Texture Synthesis

机译:用于纹理合成的多尺度标签图提取

获取原文
获取原文并翻译 | 示例

摘要

Texture synthesis is a well-established area, with many importantrnapplications in computer graphics and vision. However, despiterntheir success, synthesis techniques are not used widely in practicernbecause the creation of good exemplars remains challenging andrnextremely tedious. In this paper, we introduce an unsupervisedrnmethod for analyzing texture content across multiple scales thatrnautomatically extracts good exemplars from natural images. Unlikernexisting methods, which require extensive manual tuning, our method is fully automatic. This allows the user to focus on usingrntexture palettes derived from their own images, rather than on manualrninteractions dictated by the needs of an underlying algorithm.rnMost natural textures exhibit patterns at multiple scales that mayrnvary according to the location (non-stationarity). To handle suchrntextures many synthesis algorithms rely on an analysis of the inputrnand a guidance of the synthesis. Our new analysis is based on arnlabeling of texture patterns that is both (ⅰ) multi-scale and (ⅱ) unsupervisedrn– that is, patterns are labeled at multiple scales, and thernscales and the number of labeled clusters are selected automatically.rnOur method works in two stages. The first builds a hierarchicalrnextension of superpixels and the second labels the superpixelsrnbased on random walk in a graph of similarity between superpixelsrnand a nonnegative matrix factorization. Our label-maps providerndescriptors for pixels and regions that benefit state-of-the-art texturernsynthesis algorithms. We show several applications includingrnguidance of non-stationary synthesis, content selection and texturernpainting. Our method is designed to treat large inputs and can scalernto many megapixels. In addition to traditional exemplar inputs, ourrnmethod can also handle natural images containing different texturedrnregions.
机译:纹理合成是一个成熟的领域,在计算机图形学和视觉领域有许多重要的应用。然而,尽管取得了成功,但是合成技术并未在实践中广泛使用,因为创建好的样本仍然具有挑战性并且极其繁琐。在本文中,我们引入了一种无监督方法来跨多个尺度分析纹理内容,该方法会自动从自然图像中提取出良好的样本。与现有方法不同,它需要大量的手动调整,而我们的方法是全自动的。这使用户可以专注于使用从自己的图像派生的纹理调色板,而不是使用由基础算法的需求所决定的手动交互。大多数自然纹理都显示出可能根据位置而变化的多个比例的图案(非平稳性)。为了处理这样的纹理,许多合成算法都依赖于对输入的分析和合成的指导。我们的新分析基于纹理图案的arnlabeling,纹理图案既是(ⅰ)多尺度的,也是(ⅱ)无监督的-即,在多个尺度上标记图案,然后自动选择尺度和标记簇的数量。分两个阶段。第一种基于超像素之间的相似度图中的随机游动和非负矩阵分解来构建超像素的层次扩展,第二种基于随机游走标记超像素。我们的标签图提供程序提供了像素和区域的描述符,这些描述符和区域有益于最新的纹理合成算法。我们展示了几种应用,包括非平稳合成的指导,内容选择和纹理绘画。我们的方法旨在处理大量输入,并且可以缩放到数百万像素。除了传统的示例输入,我们的方法还可以处理包含不同纹理区域的自然图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号