首页> 外文期刊>ACM transactions on database systems >Learning Models over Relational Data Using Sparse Tensors and Functional Dependencies
【24h】

Learning Models over Relational Data Using Sparse Tensors and Functional Dependencies

机译:使用稀疏张量和功能依赖性学习通过关系数据的模型

获取原文

摘要

Integrated solutions for analytics over relational databases are of great practical importance as they avoid the costly repeated loop data scientists have to deal with on a daily basis: select features from data residing in relational databases using feature extraction queries involving joins, projections, and aggregations; export the training dataset defined by such queries; convert this dataset into the format of an external learning tool; and train the desired model using this tool. These integrated solutions are also a fertile ground of theoretically fundamental and challenging problems at the intersection of relational and statistical data models.This article introduces a unified framework for training and evaluating a class of statistical learning models over relational databases. This class includes ridge linear regression, polynomial regression, factorization machines, and principal component analysis. We show that, by synergizing key tools from database theory such as schema information, query structure, functional dependencies, recent advances in query evaluation algorithms, and from linear algebra such as tensor and matrix operations, one can formulate relational analytics problems and design efficient (query and data) structure-aware algorithms to solve them.This theoretical development informed the design and implementation of the AC/DC system for structure-aware learning. We benchmark the performance of AC/DC against R, MADlib, libFM, and TensorFlow. For typical retail forecasting and advertisement planning applications, AC/DC can learn polynomial regression models and factorization machines with at least the same accuracy as its competitors and up to three orders of magnitude faster than its competitors whenever they do not run out of memory, exceed 24-hour timeout, or encounter internal design limitations.
机译:关于关系数据库的分析的集成解决方案具有很大的实用性,因为它们避免了昂贵的重复循环数据科学家每天必须处理:使用涉及加入,预测和聚合的特征提取查询来选择来自关系数据库中的数据的功能;导出由此类查询定义的培训数据集;将此数据集转换为外部学习工具的格式;并使用此工具列出所需的模型。这些综合解决方案也是在关系和统计数据模型交叉口的理论上基本和挑战性问题的肥沃地位。这篇文章介绍了培训和评估了一类关于关系数据库的统计学习模型的统一框架。该类包括脊线性回归,多项式回归,分解机和主成分分析。我们表明,通过从数据库理论中协同关键工具,例如架构信息,查询结构,功能依赖性,查询评估算法的最新进步,以及从诸如张量和矩阵操作的线性代数,可以制定关系分析问题和设计高效(查询和数据)结构感知算法解决它们。本文的理论开发了解AC / DC系统的设计和实现,实现了结构感知学习。我们将AC / DC对R,Madlib,Libfm和Tensorflow的表现进行基准。对于典型的零售预测和广告规划应用,AC / DC可以学习多项式回归模型和分解机,以至少与其竞争对手相同的准确度,并且每当他们没有耗尽内存时比其竞争对手快三个数量级,超过24小时超时或遇到内部设计限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号