首页> 外文期刊>ACM transactions on database systems >Processing Spatial Skyline Queries in Both Vector Spaces and Spatial Network Databases
【24h】

Processing Spatial Skyline Queries in Both Vector Spaces and Spatial Network Databases

机译:在向量空间和空间网络数据库中处理空间天际线查询

获取原文
获取原文并翻译 | 示例

摘要

In this article, we first introduce the concept of Spatial Skyline Queries (SSQ). Given a set of data points P and a set of query points Q, each data point has a number of derived spatial attributes each of which is the point's distance to a query point. An SSQ retrieves those points of P which are not dominated by any other point in P considering their derived spatial attributes. The main difference with the regular skyline query is that this spatial domination depends on the location of the query points Q. SSQ has application in several domains such as emergency response and online maps. The main intuition and novelty behind our approaches is that we exploit the geometric properties of the SSQ problem space to avoid the exhaustive examination of all the point pairs in P and Q. Consequently, we reduce the complexity of SSQ search from O(|P|~2|Q|) to O(|S|~2|C| + -|P|~(1/2)), where |S| and |C| are the solution size and the number of vertices of the convex hull of Q, respectively.rnConsidering Euclidean distance, we propose two algorithms, B~2S~2 and VS~2, for static query points and one algorithm, VCS~2, for streaming Q whose points change location over time (e.g., are mobile). VCS~2 exploits the pattern of change in Q to avoid unnecessary recomputation of the skyline and hence efficiently perform updates. We also propose two algorithms, SNS~2 and VSNS~2, that compute the spatial skyline with respect to the network distance in a spatial network database. Our extensive experiments using real-world datasets verify that both R-tree-based B~2S~2 and Voronoi-based VS~2 outperform the best competitor approach in terms of both processing time and I/O cost. Furthermore, their output computed based on Euclidean distance is a good approximation of the spatial skyline in network space. For accurate computation of spatial skylines in network space, our experiments showed the superiority of VSNS~2 over SNS~2.
机译:在本文中,我们首先介绍空间天际线查询(SSQ)的概念。给定一组数据点P和一组查询点Q,每个数据点都具有多个派生的空间属性,每个空间属性都是该点到查询点的距离。考虑到其派生的空间属性,SSQ会检索P中不受其他任何点支配的那些P点。与常规天际线查询的主要区别在于,这种空间优势取决于查询点Q的位置。SSQ已在多个领域中应用,例如紧急响应和在线地图。我们方法背后的主要直觉和新颖之处在于,我们利用SSQ问题空间的几何特性来避免对P和Q中所有点对进行详尽的检查。因此,我们降低了从O(| P | 〜2 | Q |)到O(| S |〜2 | C | +-| P |〜(1/2)),其中| S |和| C |考虑到欧几里得距离,我们针对静态查询点提出了两种算法B〜2S〜2和VS〜2,以及一种针对VCS的算法VCS〜2。流Q,其点随时间改变位置(例如,移动的)。 VCS〜2利用Q的变化模式来避免对天际线进行不必要的重新计算,从而有效地执行更新。我们还提出了两种算法SNS_2和VSNS_2,它们根据空间网络数据库中的网络距离来计算空间天际线。我们使用实际数据集进行的广泛实验证明,在处理时间和I / O成本方面,基于R树的B〜2S〜2和基于Voronoi的VS〜2均优于最佳竞争对手。此外,基于欧几里德距离计算得出的输出非常近似于网络空间中的空间天际线。为了准确计算网络空间中的空间天际线,我们的实验表明VSNS〜2优于SNS〜2。

著录项

  • 来源
    《ACM transactions on database systems》 |2009年第3期|14.1-14.45|共45页
  • 作者单位

    Information Laboratory (InfoLab) Computer Science Department, University of Southern California, Los Angeles, CA 90089-0781;

    Information Laboratory (InfoLab), Computer Science Department, University of Southern California, Los Angeles, CA 90089-0781;

    Information Laboratory (InfoLab), Computer Science Department, University of Southern California, Los Angeles, CA 90089-0781;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    spatial skyline; spatial databases; voronoi diagrams;

    机译:空间天际线;空间数据库;voronoi图;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号