首页> 外文期刊>ACM transactions on computer systems >Automated Anomaly Detection and Performance Modeling of Enterprise Applications
【24h】

Automated Anomaly Detection and Performance Modeling of Enterprise Applications

机译:企业应用程序的自动异常检测和性能建模

获取原文
获取原文并翻译 | 示例

摘要

Automated tools for understanding application behavior and its changes during the application life-cycle are essential for many performance analysis and debugging tasks. Application performance issues have an immediate impact on customer experience and satisfaction. A sudden slowdown of enterprise-wide application can effect a large population of customers, lead to delayed projects, and ultimately can result in company financial loss. Significantly shortened time between new software releases further exacerbates the problem of thoroughly evaluating the performance of an updated application. Our thesis is that online performance modeling should be a part of routine application monitoring. Early, informative warnings on significant changes in application performance should help service providers to timely identify and prevent performance problems and their negative impact on the service. We propose a novel framework for automated anomaly detection and application change analysis. It is based on integration of two complementary techniques: (ⅰ) a regression-based transaction model that reflects a resource consumption model of the application, and (ⅱ) an application performance signature that provides a compact model of runtime behavior of the application. The proposed integrated framework provides a simple and powerful solution for anomaly detection and analysis of essential performance changes in application behavior. An additional benefit of the proposed approach is its simplicity: It is not intrusive and is based on monitoring data that is typically available in enterprise production environments. The introducedrnsolution further enables the automation of capacity planning and resource provisioning tasks of multitier applications in rapidly evolving IT environments.
机译:用于了解应用程序行为及其在应用程序生命周期中的变化的自动化工具对于许多性能分析和调试任务至关重要。应用程序性能问题直接影响客户体验和满意度。企业范围内应用程序的突然减慢可能影响大量客户,导致项目延迟,最终可能导致公司财务损失。新软件发布之间的时间大大缩短,这进一步加剧了彻底评估更新应用程序性能的问题。我们的论点是,在线性能建模应该成为常规应用程序监视的一部分。有关应用程序性能发生重大变化的早期信息性警告应有助于服务提供商及时发现并防止性能问题及其对服务的负面影响。我们提出了一种用于自动异常检测和应用程序更改分析的新颖框架。它基于两种互补技术的集成:(ⅰ)反映应用程序资源消耗模型的基于回归的事务模型,以及(ⅱ)提供应用程序运行时行为的紧凑模型的应用程序性能签名。所提出的集成框架为异常检测和分析应用程序行为中的基本性能变化提供了一个简单而强大的解决方案。提议的方法的另一个好处是它的简单性:它不具侵入性,并且基于监视企业生产环境中通常可用的数据。引入的解决方案进一步实现了在快速发展的IT环境中自动化多层应用程序的容量规划和资源供应任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号