首页> 外文期刊>ACM transactions on computer systems >Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems
【24h】

Pivot Tracing: Dynamic Causal Monitoring for Distributed Systems

机译:数据透视跟踪:分布式系统的动态因果监视

获取原文
获取原文并翻译 | 示例

摘要

Monitoring and troubleshooting distributed systems is notoriously difficu potential problems are complex, varied, and unpredictable. The monitoring and diagnosis tools commonly used today-logs, counters, and metrics-have two important limitations: what gets recorded is defined a priori, and the information is recorded in a component-or machine-centric way, making it extremely hard to correlate events that cross these boundaries. This article presents Pivot Tracing, a monitoring framework for distributed systems that addresses both limitations by combining dynamic instrumentation with a novel relational operator: the happened-before join. Pivot Tracing gives users, at runtime, the ability to define arbitrarymetrics at one point of the system, while being able to select, filter, and group by events meaningful at other parts of the system, even when crossing component or machine boundaries. We have implemented a prototype of Pivot Tracing for Java-based systems and evaluate it on a heterogeneous Hadoop cluster comprising HDFS, HBase, MapReduce, and YARN. We show that Pivot Tracing can effectively identify a diverse range of root causes such as software bugs, misconfiguration, and limping hardware. We show that Pivot Tracing is dynamic, extensible, and enables cross-tier analysis between inter-operating applications, with low execution overhead.
机译:对分布式系统进行监视和故障排除非常困难。潜在问题是复杂,多样且不可预测的。今天常用的监视和诊断工具-日志,计数器和度量标准有两个重要限制:先记录的记录是先验定义的,并且信息是以组件或机器为中心的方式记录的,因此很难关联跨越这些边界的事件。本文介绍了Pivot跟踪,这是一个用于分布式系统的监视框架,该框架通过将动态工具与新型关系运算符(在连接之前发生)结合起来解决了这两个限制。数据透视跟踪使用户能够在运行时在系统的某一点定义任意度量,同时能够选择,过滤和分组在系统其他部分有意义的事件,即使跨越组件或机器边界也是如此。我们已经为基于Java的系统实现了数据透视跟踪的原型,并在包含HDFS,HBase,MapReduce和YARN的异构Hadoop群集上对其进行了评估。我们表明,数据透视跟踪可以有效地识别各种根本原因,例如软件错误,配置错误和硬件损坏。我们证明了数据透视跟踪是动态的,可扩展的,并且能够以较低的执行开销在互操作的应用程序之间进行跨层分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号