首页> 外文期刊>ACM Transactions on Computer-Human Interaction >Analyzing the Input Stream for Character- Level Errors in Unconstrained Text Entry Evaluations
【24h】

Analyzing the Input Stream for Character- Level Errors in Unconstrained Text Entry Evaluations

机译:在不受约束的文本输入评估中分析输入流中的字符级错误

获取原文
获取原文并翻译 | 示例

摘要

Recent improvements in text entry error rate measurement have enabled the running of text entry experiments in which subjects are free to correct errors (or not) as they transcribe a presented string. In these "unconstrained" experiments, it is no longer necessary to force subjects to unnaturally maintain synchronicity with presented text for the sake of performing overall error rate calculations. However, the calculation of character-level error rates, which can be trivial in artificially constrained evaluations, is far more complicated in unconstrained text entry evaluations because it is difficult to infer a subject's intention at every character. For this reason, prior character-level error analyses for unconstrained experiments have only compared presented and transcribed strings, not input streams. But input streams are rich sources of character-level error information, since they contain all of the text entered (and erased) by a subject. The current work presents an algorithm for the automated analysis of character-level errors in input streams for unconstrained text entry evaluations. It also presents new character-level metrics that can aid method designers in refining text entry methods. To exercise these metrics, we perform two analyses on data from an actual text entry experiment. One analysis, available from the prior work, uses only presented and transcribed strings. The other analysis uses input streams, as described in the current work. The results confirm that input stream error analysis yields richer information for the same empirical data. To facilitate the use of these new analyses, we offer pseudocode and downloadable software for performing unconstrained text entry experiments and analyzing data.
机译:文本输入错误率测量的最新改进使文本输入实验得以运行,在这些实验中,受试者在转录呈现的字符串时可以自由地纠正(或不纠正)错误。在这些“无限制”的实验中,不再需要为了执行整体错误率计算而强迫受试者与所呈现的文本不自然地保持同步。但是,字符级别错误率的计算在人为约束的评估中可能是微不足道的,而在无约束的文本输入评估中则要复杂得多,因为很难推断出对象对每个字符的意图。因此,先前针对无约束实验的字符级错误分析仅比较了显示和转录的字符串,而不是输入流。但是输入流是字符级错误信息的丰富来源,因为它们包含主题输入(和擦除)的所有文本。当前的工作提出了一种算法,用于自动分析输入流中的字符级错误,以进行不受约束的文本输入评估。它还提出了新的字符级度量标准,可以帮助方法设计人员完善文本输入方法。为了行使这些指标,我们对来自实际文本输入实验的数据进行了两次分析。可以从以前的工作中获得的一种分析仅使用显示和转录的字符串。另一分析使用输入流,如当前工作中所述。结果证实,对于相同的经验数据,输入流错误分析会产生更丰富的信息。为了方便使用这些新分析,我们提供了伪代码和可下载软件,用于执行无限制的文本输入实验和分析数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号