首页> 外文期刊>ACM Transactions on Computer-Human Interaction >Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing: A Machine Learning Approach With Robust Feature Selection
【24h】

Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing: A Machine Learning Approach With Robust Feature Selection

机译:使用被动传感捕获的纵向症状检测抑郁症并预测其发病:一种具有鲁棒特征选择的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

We present a machine learning approach that uses data from smartphones and fitness trackers of 138 college students to identify students that experienced depressive symptoms at the end of the semester and students whose depressive symptoms worsened over the semester. Our novel approach is a feature extraction technique that allows us to select meaningful features indicative of depressive symptoms from longitudinal data. It allows us to detect the presence of post-semester depressive symptoms with an accuracy of 85.7% and change in symptom severity with an accuracy of 85.4%. It also predicts these outcomes with an accuracy of 80%, 11-15 weeks before the end of the semester, allowing ample time for pre-emptive interventions. Our work has significant implications for the detection of health outcomes using longitudinal behavioral data and limited ground truth. By detecting change and predicting symptoms several weeks before their onset, our work also has implications for preventing depression.
机译:我们提出了一种机器学习方法,它使用138名大学生的智能手机和健身跟踪人员的数据,以识别在学期结束时经历抑郁症状的学生,并且在学期中抑郁症状恶化的学生。我们的新方法是一种特征提取技术,使我们能够选择具有来自纵向数据的抑郁症状的有意义的特征。它允许我们检测中脑后抑郁症状的存在,精度为85.7%,症状严重程度的变化,精度为85.4%。它还预测了这些结果,精度为> 80%,在学期结束前11-15周,允许充足的时间进行先发制人的干预措施。我们的工作对使用纵向行为数据和基础事实有限检测健康结果的显着影响。通过在发病前几周进行改变和预测症状,我们的工作也对预防抑郁症具有影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号