首页> 外文期刊>ACM Transactions on Computational Theory >Exponential Lower Bounds for AC~0-Frege Imply Superpolynomial Frege Lower Bounds
【24h】

Exponential Lower Bounds for AC~0-Frege Imply Superpolynomial Frege Lower Bounds

机译:AC〜0-Frege的指数下界表示超多项式Frege下界

获取原文
获取原文并翻译 | 示例

摘要

We give a general transformation that turns polynomial-size Frege proofs into subexponential-size AC~0-Frege proofs. This indicates that proving truly exponential lower bounds for AC~0-Frege is hard, as it is a long-standing open problem to prove superpolynomial lower bounds for Frege. Our construction is optimal for proofs of formulas of unbounded depth. As a consequence of our main result, we are able to shed some light on the question of automatizability for bounded-depth Frege systems. First, we present a simpler proof of the results of Bonet et al. showing that under cryptographic assumptions, bounded-depth Frege proofs are not automatizable. Second, we show that because our proof is more general, under the right cryptographic assumptions, it could resolve the automatizability question for lower-depth Frege systems.
机译:我们给出了将多项式大小的Frege证明转换为次指数大小的AC〜0-Frege证明的一般转换。这表明证明AC〜0-Frege的真正指数下界是困难的,因为证明Frege的超多项式下界是一个长期存在的问题。我们的构造最适合于无限深度公式的证明。作为主要结果的结果,我们能够阐明有限深度Frege系统的可自动化性问题。首先,我们给出了Bonet等人结果的简单证明。表明在密码学假设下,深度自动Frege证明无法自动执行。其次,我们表明,由于我们的证明更为笼统,因此在正确的密码假设下,它可以解决较低深度的Frege系统的可自动化性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号