...
首页> 外文期刊>ACM Transactions on Computational Theory >Arithmetic Circuit Lower Bounds via Maximum-Rank of Partial Derivative Matrices
【24h】

Arithmetic Circuit Lower Bounds via Maximum-Rank of Partial Derivative Matrices

机译:通过偏导数矩阵的最大秩算术电路的下界

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We introduce the polynomial coefficient matrix and identify the maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results: 1.As our first main result, we prove that any homogeneous depth-3 circuit for computing the product of d matrices of dimension n × n requires Ω(n~(d-1)/2~d) size. This improves the lower bounds in Nisan and Wigderson [1995] for d = ω(1). 2.As our second main result, we show that there is an explicit polynomial on n variables and degree at most n/2 for which any depth-3 circuit of product dimension at most n/10 (dimension of the space of affine forms feeding into each product gate) requires size 2~(Ω(n)). This generalizes the lower bounds against diagonal circuits proved in Saxena [2008]. Diagonal circuits are of product dimension 1. 3.We prove a n~(Ω(log n)) lower bound on the size of product-sparse formulas. By definition, any multilinear formula is a product-sparse formula. Thus, this result extends the known super-polynomial lower bounds on the size of multilinear formulas [Raz 2006]. 4.We prove a2~(Ω(n)) lower bound on the size of partitioned arithmetic branching programs. This result extends the known exponential lower bound on the size of ordered arithmetic branching programs [Jansen 2008].
机译:我们介绍了多项式系数矩阵,并确定了变量替换下该矩阵的最大秩,作为多元多项式的复杂性度量。我们使用我们的技术来证明针对几类非多线性算术电路的超多项式下界。特别是,我们得到以下结果:1.作为我们的第一个主要结果,我们证明用于计算维数n×n的d矩阵乘积的任何齐次深度3电路都需要Ω(n〜(d-1)/ 2 〜d)大小。这改善了Nisan和Wigderson [1995]中d =ω(1)的下界。 2.作为第二个主要结果,我们表明在n个变量和度为n / 2的地方有一个显式多项式,对于该乘积,任何深度为3的乘积维数最多为n / 10的回路(仿射空间的维数都会进给)进入每个产品门)需要2〜(Ω(n))的大小。这概括了Saxena [2008]中证明的对角电路的下界。对角电路的乘积维数为1。3.我们证明了乘积稀疏公式的大小的n〜(Ω(log n))下界。根据定义,任何多线性公式都是乘积稀疏公式。因此,该结果扩展了多线性公式大小的已知超多项式下界[Raz 2006]。 4.我们证明了分区算术分支程序的大小的a2〜(Ω(n))下界。该结果扩展了有序算术分支程序的大小的已知指数下界[Jansen 2008]。

著录项

  • 来源
    《ACM Transactions on Computational Theory》 |2016年第3期|8.1-8.17|共17页
  • 作者单位

    Department of Computer Science, Rutgers University, USA;

    Department of Computer Science & Engineering, Indian Institute of Technology Madras, Chennai, India;

    Department of Computer Science & Engineering, Indian Institute of Technology Madras, Chennai, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号