首页> 外文期刊>ACM transactions on computation theory >Lower Bounding the AND-OR Tree via Symmetrization
【24h】

Lower Bounding the AND-OR Tree via Symmetrization

机译:通过对称化降低边界和树木

获取原文
获取原文并翻译 | 示例

摘要

We prove a simple, nearly tight lower bound on the approximate degree of the two-level AND-OR tree using symmetrization arguments. Specifically, we show that deg(AND_m ° OR_n) = Ω((mn)~(1/2)). We prove this lower bound via reduction to the OR function through a series of symmetrization steps, in contrast to most other proofs that involve formulating approximate degree as a linear program [6, 10, 21]. Our proof also demonstrates the power of a symmetrization technique involving Laurent polynomials (polynomials with negative exponents) that was previously introduced by Aaronson et al.
机译:使用对称参数,我们证明了一个简单,几乎紧的下限,近似的双层和树或树的近似。具体而言,我们显示DEG(AND_M°或_N)=ω((MN)〜(1/2))。我们通过一系列对称步骤来证明这一点通过减少到或功能,与大多数其他对称步骤相比,涉及作为线性程序的近似程度的大多数其他证据[6,10,21]。我们的证据还展示了涉及由Aaronson等人引入的Laurent多项式(具有负指数的多项式)的对称化技术的力量。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号