首页> 外文期刊>ACM transactions on computation theory >Circuit Lower Bounds for MCSP from Local Pseudorandom Generators
【24h】

Circuit Lower Bounds for MCSP from Local Pseudorandom Generators

机译:来自本地伪随机发生器的MCSP的电路下限

获取原文
获取原文并翻译 | 示例

摘要

The Minimum Circuit Size Problem (MCSP) asks if a given truth table of a Boolean function f can be computed by a Boolean circuit of size at most θ, for a given parameter θ. We improve several circuit lower bounds for MCSP, using pseudorandom generators (PRGs) that are local; a PRG is called local if its output bit strings, when viewed as the truth table of a Boolean function, can be computed by a Boolean circuit of small size. We get new and improved lower bounds for MCSP that almost match the best-known lower bounds against several circuit models. Specifically, we show that computing MCSP, on functions with a truth table of length N, requires 1. N~(3-o(1))-size de Morgan formulas, improving the recent N(2-o(1)) lower bound by Hirahara and San-thanam (CCC, 2017), 2. N~(2-o(1))-size formulas over an arbitrary basis or general branching programs (no non-trivial lower bound was known for MCSP against these models), and 3. 2~(Ω(N~(1/(d+1.01))))-size depth-d AC~0 circuits, improving the (implicit, in their work) exponential size lower bound by Allender et al. (SICOMP, 2006). The AC~0 lower bound stated above matches the best-known AC~0 lower bound (for PARITY) up to a small additive constant in the depth. Also, for the special case of depth-2 circuits (i.e., CNFs or DNFs), we get an optimal lower bound of 2~(Ω(N)) for MCSP.
机译:最小电路大小问题(MCSP)询问布尔函数f的给定真理表是否可以由大多数θ的布尔电路计算给定参数θ。我们使用本地伪随机发生器(PRGS)改进MCSP的几个电路下限;如果它的输出位字符串将作为布尔函数的真实表查看时,则称为本地,可以通过小尺寸的布尔电路来计算。我们为MCSP获得新的和改进的下限,几乎与若干电路模型匹配了最可知的下限。具体而言,我们表明计算MCSP与长度N的真相表的功能,需要1.N〜(3-O(1)) - 尺寸DE摩根公式,改善近期N(2-O(1))更低由Hirahara和San-Thanam(CCC,2017),2. N〜(2-O(1)) - 尺寸公式,按任意基础或一般分支计划(没有针对这些模型的MCSP已知非平凡的下限)和3. 2〜(n〜(n〜(1 /(d + 1.01))))) - 尺寸深度-d AC〜0电路,改善(隐式,在其工作中)指数尺寸下限由Allender等。 (Sicomp,2006)。上面说的AC〜0下限与深度中最可知的AC〜0下限(用于奇偶校验)匹配。此外,对于深度2电路的特殊情况(即,CNFS或DNF),我们为MCSP获得2〜(n))的最佳下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号